

Geometry and energy in EFT

Benoît Assi

PIKIMO 17 - Nov 16, 2024

Mostly based on <u>2307.03187</u> and <u>2410.21563</u>

Overview

EFT in a nutshell

A QFT describing low-energy limit of a 'more fundamental' theory (can also be an EFT...)

Allows calculation of experimental quantities with expansion to finite order in small parameter

We will look at

- 1) Exploiting field-space geometry and energy
- 2) Scattering amplitudes
- 3) Mapping geometric quantities to SMEFT
- 4) Applications: RGEs and precision observables
- 5) Adding fermions to the geometric story

Motivation

Geometric story begins in practical pheno calculations for SMEFT...

Number of operators grows quickly with increasing mass dimension

Motivation

And what do these operators do?

For 2- and 3-point interactions # of contributing SMEFT operators is **small** and **constant** with operator dimension \Rightarrow pheno can be done with small set of operators

Motivation

SMEFT observable up to $\mathcal{O}(1/\Lambda^4)$ corrections

$$\langle \mathcal{O}_i \rangle^{\text{SMEFT}} = \int [\text{dps}] \left(|A_{\text{SM}}|^2 + 2 \operatorname{Re}(A_{\text{SM}}) A_{\text{SMEFT}}(\tilde{C}_i^{(6)}) + \left| A_{\text{SMEFT}}(\tilde{C}_i^{(6)}) \right|^2 \right)$$
$$+ \int [\text{dps}] \left(2 \operatorname{Re}(A_{\text{SM}}) A_{\text{SMEFT}}(\tilde{C}_i^{(8)}) \right).$$

Precision SMEFT analysis **going beyond** tree-level and D=6 for many **resonant** processes e.g. $h \to \gamma \gamma, h \to \gamma Z, h \to GG, Z \to \psi \bar{\psi}, \dots$ Why?

Figure 1. The deviations in $h \to \gamma \gamma$ from the $\mathcal{O}(v^2/\Lambda^2)$ (red line) and partial-square (black line) results, and the full $\mathcal{O}(v^4/\Lambda^4)$ results (green $\pm 1\,\sigma_\delta$, yellow $\pm 2\,\sigma_\delta$, and grey $\pm 3\,\sigma_\delta$ regions). In the left panel the coefficients determining the $\mathcal{O}(v^2/\Lambda^2)$ and partial-square results are $C_{HB}^{(6)} = -0.01$, $C_{HW}^{(6)} = 0.004$, $C_{HWB}^{(6)} = 0.007$, $C_{HD}^{(6)} = -0.74$, and $\delta G_F^{(6)} = -1.6$. In the right panel they are $C_{HB}^{(6)} = 0.007$, $C_{HW}^{(6)} = 0.007$, $C_{HWB}^{(6)} = -0.015$, $C_{HD}^{(6)} = 0.50$, and $\delta G_F^{(6)} = 1.26$.

Figure 2. The deviations in $h \to \mathcal{Z}\gamma$ from the $\mathcal{O}(v^2/\Lambda^2)$ (red line) and partial-square (black line) results, and the full $\mathcal{O}(v^4/\Lambda^4)$ results (green $\pm 1\,\sigma_\delta$, yellow $\pm 2\,\sigma_\delta$, and grey $\pm 3\,\sigma_\delta$ regions). In the left panel the coefficients determining the $\mathcal{O}(v^2/\Lambda^2)$ and partial-square results are $C_{HB}^{(6)} = -0.01$, $C_{HW}^{(6)} = 0.02$, $C_{HWB}^{(6)} = -0.011$, $C_{HD}^{(6)} = 0.53$, and $\delta G_F^{(6)} = 0.13$. In the right panel they are $C_{HB}^{(6)} = 0.002$, $C_{HW}^{(6)} = 0.001$, $C_{HWB}^{(6)} = -0.001$, $C_{HD}^{(6)} = 0.28$, and $\delta G_F^{(6)} = -1.15$.

[Hays et al 2007.00565]

Many operators beyond D=6 + loop-corrections for perturbative uncertainty of SMEFT

New calculation and organisational tools required ⇒ uncover geometric EFT structure

Scalar field theory

NLSM: A scalar field theory can be written as

$$\mathcal{L} = \frac{1}{2} h_{IJ}(\boldsymbol{\phi}) (\partial_{\mu} \phi)^{I} (\partial^{\mu} \phi)^{J} - V(\boldsymbol{\phi})$$

Riemannian metric in field-space is $h_{I\!J}(\phi)$ wrt field multiplet ϕ^I

Expanding around flat-space ⇒ **higher-dim operators**

$$h_{IJ} = \delta_{IJ} + h_{IJ,K}\phi^K + h_{IJ,KL}\phi^K\phi^L + \dots$$

Scalar EFT ↔ field theory on curved scalar manifold

Can include higher-derivative metric-independent operators E.g.

$$\lambda_{IJKL}(\phi)\partial_{\mu}\phi^{I}\partial^{\mu}\phi^{J}\partial_{\nu}\phi^{K}\partial^{\nu}\phi^{L}$$

Geometry

Key insight: S-matrix is **field re-definition invariant** \leftrightarrow Lagrangian can change but not physical observables

Field re-definition ↔ coord change on scalar field-space manifold

$$\phi^I \to \varphi^I(\phi)$$

Then the field-space metric transforms as a tensor

$$g_{IJ}(\boldsymbol{\phi}) \to g'_{IJ}(\boldsymbol{\varphi}) = \left(\frac{\partial \phi^K}{\partial \varphi^I}\right) \left(\frac{\partial \phi^L}{\partial \varphi^J}\right) g_{KL}(\boldsymbol{\phi})$$

and the derivative of the scalar transforms as a vector

$$\partial_{\mu}\phi^{I} \to \partial_{\mu}\varphi^{I} = \left(\frac{\partial \varphi^{I}}{\partial \phi^{J}}\right) \partial_{\mu}\phi^{J}$$

⇒ Lagrangian is also an invariant scalar density

Scalar amplitudes

Riemann curvature

$$R_{IJKL} = h_{IM} \left(\partial_K \Gamma_{LJ}^M + \Gamma_{KN}^M \Gamma_{LJ}^N \right) - (K \leftrightarrow L)$$

with covariant derivative ∇_I and Christoffel symbol

$$\Gamma^{I}_{JK} = \frac{1}{2} h^{IL} (h_{JL,K} + h_{LK,J} - h_{JK,L})$$

4-point Born amplitude $\phi_I \phi_J \rightarrow \phi_K \phi_L$ (massless fields)

$$A_{IJKL}^4 = R_{IJKL}s_{IK} + R_{IKJL}s_{IJ}, \quad s_{ij} = (p_i + p_j)^2$$

Amplitudes depend on **geometric invariants**!

Bose symmetry $\leftrightarrow R_{IJKL}$ symmetries **Bianchi IDs**

$$R_{IJKL} + R_{IKLJ} + R_{ILJK} = 0$$
 $R_{IJMN;L} + R_{IJLM;N} + R_{IJNL;M} = 0$

Gauge fields

Incorporating gauge fields in similar fashion [Helset, Manohar, Simons 2210.08000, 2212.03253]

$$\mathcal{L} = \frac{1}{2} h_{IJ}(\boldsymbol{\phi}) (D_{\mu} \phi)^I (D^{\mu} \phi)^J - V(\boldsymbol{\phi}) - \frac{1}{4} g_{AB}(\boldsymbol{\phi}) F_{\mu\nu}^A F^{\mu\nu,B}$$

on scalar field manifolds with metrics $h_{IJ}(\phi)$ and $g_{AB}(\phi)$

$$(D_{\mu}\phi)^{I} = \partial_{\mu}\phi^{I} + A_{\mu}^{B}t_{B}^{I}(\phi) \qquad F_{\mu\nu}^{B} = \partial_{\mu}A_{\nu}^{B} - \partial_{\nu}A_{\mu}^{B} - f_{CD}^{B}A_{\mu}^{C}A_{\nu}^{D}$$

Killing vectors (isometric) of scalar manifold with null Lie derivative

$$t_A^K h_{IJ,K} + t_{A,I}^K h_{KJ} + t_{A,J}^K h_{IK} = 0$$
 and Lie bracket $[t_A, t_B]^I = f_{AB}^C t_C^I$

Can also use combined metric

$$\tilde{g}_{ij} = \begin{pmatrix} h_{IJ} & 0 \\ 0 & -g_{AB}\eta_{\mu_A\mu_B} \end{pmatrix}$$

and combined geometric quantities

Application: RGEs

The 2nd variation has the form [t'Hooft '74, Alonso, Manohar et al '20]

$$\delta_{\eta\eta} S = \frac{1}{2} \int d^4x \left\{ h_{IJ} (\mathcal{D}_{\mu} \eta)^I (\mathcal{D}_{\mu} \eta)^J + X_{IJ} \eta^I \eta^J \right\}$$

and 1-loop pole is given by

$$\Delta S = \frac{1}{32\pi^2 \epsilon} \int d^4 x \left\{ \frac{1}{12} \text{Tr} \left[Y_{\mu\nu} Y^{\mu\nu} \right] + \frac{1}{2} \text{Tr} \left[\mathcal{X}^2 \right] \right\}$$

applied to scalar-gauge theory

$$\left[\widetilde{\mathscr{D}}_{\mu},\widetilde{\mathscr{D}}_{\nu}\right]^{i}_{j} = \left[\widetilde{Y}_{\mu\nu}\right]^{i}_{j} = \widetilde{R}^{i}_{jkl}(D_{\mu}Z)^{k}(D_{\nu}Z)^{l} + \widetilde{\nabla}_{j}\widetilde{t}_{C}^{i}F_{\mu\nu}^{C} \qquad Z_{\mu}^{i} = \begin{bmatrix} (D_{\mu}\phi)^{I} \\ F_{\mu}^{A\ \mu_{A}} \end{bmatrix}$$

$$\widetilde{\mathcal{D}}_{\mu} \begin{bmatrix} \eta^I \\ \zeta_{\lambda}^A \end{bmatrix} = \partial_{\mu} \begin{bmatrix} \eta^I \\ \zeta_{\lambda}^A \end{bmatrix} + \begin{bmatrix} t_{C,J}^I A_{\mu}^C + \Gamma_{LJ}^I (D_{\mu}\phi)^L & -\Gamma_{CB}^I F_{\mu\sigma}^C \\ \Gamma_{CJ}^A F_{\mu\lambda}^C & -f_{CB}^A A_{\mu}^C \eta_{\lambda\sigma} + \Gamma_{LB}^A (D_{\mu}\phi)^L \eta_{\lambda\sigma} \end{bmatrix} \begin{bmatrix} \eta^J \\ \zeta_{\sigma}^B \end{bmatrix}$$

with parts read from each 2nd variation

$$\mathcal{X}^{I}{}_{J} = h^{IK} X_{KJ} \qquad \qquad \mathcal{X} = \begin{bmatrix} [\mathcal{X}_{\eta\eta}]^{I}{}_{J} & [\mathcal{X}_{\eta\zeta}]^{I}{}_{(B\mu_{B})} \\ [\mathcal{X}_{\eta\zeta}]^{(A\mu_{A})}{}_{J} & [\mathcal{X}_{\zeta\zeta}]^{(A\mu_{A})}{}_{(B\mu_{B})} \end{bmatrix}$$

Fermions

General Lagrangian [BA, Helset, Manohar, Pagès, Shen 2307.03817]

$$\begin{split} \mathcal{L} &= \frac{1}{2} h_{IJ}(\phi) (D_{\mu}\phi)^I (D^{\mu}\phi)^J - V(\phi) - \frac{1}{4} g_{AB}(\phi) F_{\mu\nu}^A F^{B\mu\nu} \\ &+ \frac{1}{2} i k_{\bar{p}r}(\phi) \Big(\bar{\psi}^{\bar{p}} \gamma^{\mu} \overleftrightarrow{D}_{\mu} \psi^r \Big) + i \omega_{\bar{p}rI}(\phi) (D_{\mu}\phi)^I \bar{\psi}^{\bar{p}} \gamma^{\mu} \psi^r - \bar{\psi}^{\bar{p}} \mathcal{M}_{\bar{p}r}(\phi) \psi^r + \bar{\psi}^{\bar{p}} \sigma_{\mu\nu} \mathcal{T}^{\mu\nu}_{\bar{p}r}(\phi, F) \psi^r \end{split}$$

All tensors are functions of **scalar fields** except $\mathcal{T}^{\mu\nu}_{\bar{p}r}(\phi,F)$

Under fermion field re-definition $\psi^p \to R^p_s(\phi)\psi^s$

$$k_{\bar{p}r} \rightarrow \left[(R^{\dagger})^{-1} k R^{-1} \right]_{\bar{p}r}$$
,

$$\omega_{\bar{p}rI} \to \left[(R^{\dagger})^{-1} \omega_I R^{-1} \right]_{\bar{p}r} + \frac{1}{2} \left[(R^{\dagger})^{-1} k (\partial_I R^{-1}) \right]_{\bar{p}r} - \frac{1}{2} \left[(\partial_I (R^{\dagger})^{-1}) k R^{-1} \right]_{\bar{p}r}$$

 $\Rightarrow k_{\bar{p}r}$ transforms as a **Hermitian** metric and $\omega_{\bar{p}rI}$ transforms as an **anti-Hermitian** connection

Scalar-fermion metric

Promoting Riemannian scalar manifold to a graded supermanifold

[DeWitt '12, Rogers '07]

We can group the fields into a **multiplet**
$$\Phi^a = \begin{pmatrix} \phi^I \\ \psi^p \\ \bar{\psi}^{\bar{p}} \end{pmatrix}$$
 and **metric**

$$\bar{g}_{ab}(\phi,\psi) = \begin{pmatrix} h_{IJ} & -\left(\frac{1}{2}k_{\bar{s}r,I} - \omega_{\bar{s}rI}\right)\bar{\psi}^{\bar{s}} & \left(\frac{1}{2}k_{\bar{r}s,I} + \omega_{\bar{r}sI}\right)\psi^{s} \\ \left(\frac{1}{2}k_{\bar{s}p,J} - \omega_{\bar{s}pJ}\right)\bar{\psi}^{\bar{s}} & 0 & k_{\bar{r}p} \\ -\left(\frac{1}{2}k_{\bar{p}s,J} + \omega_{\bar{p}sJ}\right)\psi^{s} & -k_{\bar{p}r} & 0 \end{pmatrix}$$

Derived by requiring metric transforms as tensor under field redef

Scattering amplitudes

The 4-point $\psi^p \phi^I \to \psi^{\bar{r}} \phi^J$ massless scattering amplitude

$$\mathcal{A}_{pI\bar{r}J} = (\bar{u}_{\bar{r}} p_I u_p) \bar{R}_{\bar{r}pJI}$$

The 5-point $\psi^p\phi^I o \psi^{ar r}\phi^J\phi^K$

$$\mathcal{A}_{pI\bar{r}JK} = (\bar{u}_{\bar{r}} p_J u_p) \bar{\nabla}_K \bar{R}_{\bar{r}pIJ} + (\bar{u}_{\bar{r}} p_K u_p) \bar{\nabla}_J \bar{R}_{\bar{r}pIK}$$

$$\bar{\nabla}_K \bar{R}_{\bar{r}pIJ} = \bar{R}_{\bar{r}pIJ,K} - \bar{\Gamma}_{\bar{r}K}^{\bar{s}} \bar{R}_{\bar{s}pIJ} - \bar{\Gamma}_{pK}^{s} \bar{R}_{\bar{r}sIJ} - \bar{\Gamma}_{IK}^{L} \bar{R}_{\bar{r}pLJ} - \bar{\Gamma}_{JK}^{L} \bar{R}_{\bar{r}pIL}$$

Turning on the scalar potential and fermion mass matrix

$$\begin{split} \mathcal{A}_{pI\bar{r}J} = & (\bar{u}_{\bar{r}} \not p_I u_p) \left(\bar{R}_{\bar{r}pJI} + k^{s\bar{t}} \left(\frac{\mathcal{M}_{\bar{r}s;I} \mathcal{M}_{\bar{t}p;J}}{s_{\bar{r}I}} - \frac{\mathcal{M}_{\bar{r}s;J} \mathcal{M}_{\bar{t}p;I}}{s_{pI}} \right) \right) \\ & - (\bar{u}_{\bar{r}} u_p) \left(\mathcal{M}_{\bar{r}p;IJ} - h^{LK} \frac{\mathcal{M}_{\bar{r}p;L} V_{;IJK}}{s_{IJ}} \right) , \end{split}$$

Renormalisation

One-loop RGE from **2nd variation** of action $\psi^a \rightarrow \psi^a + \chi^a$

$$\delta_{\bar{\chi}\chi}S = \int d^4x \left\{ \frac{1}{2} i k_{\bar{p}r} \left(\bar{\chi}^{\bar{p}} \gamma^{\mu} \overset{\leftrightarrow}{\mathcal{D}}_{\mu} \chi^r \right) - \bar{\chi}^{\bar{p}} \mathcal{M}_{\bar{p}r} \chi^r + \bar{\chi}^{\bar{p}} \sigma_{\mu\nu} \mathcal{T}^{\mu\nu}_{\bar{p}r} \chi^r \right\}$$

with **covariant derivative** $\mathscr{D}_{\mu}=\partial_{\mu}\mathbf{1}+\omega_{\mu}$ and fermion fluctuations $\chi=\begin{pmatrix}\chi_L\\\chi_R\end{pmatrix}$

The metric. mass and dipole terms

$$k = egin{pmatrix} \kappa_L & 0 \ 0 & \kappa_R \end{pmatrix} \qquad \mathcal{M} = egin{pmatrix} 0 & M \ M^\dagger & 0 \end{pmatrix} \qquad \mathcal{T}^{\mu
u} = egin{pmatrix} 0 & T^{\mu
u} \ T^{\mu
u \dagger} & 0 \end{pmatrix} \qquad \omega_{ar{p}rI} = egin{pmatrix} \omega_{L,ar{p}rI} & 0 \ 0 & \omega_{R,ar{p}rI} \end{pmatrix}$$

gives **covariant** result for $\chi \bar{\chi}$ -variation

$$\Delta S = \frac{1}{32\pi^{2}\epsilon} \int d^{4}x \left\{ \frac{1}{3} \text{Tr} \left[\mathcal{Y}_{\mu\nu} \mathcal{Y}^{\mu\nu} \right] + \text{Tr} \left[(\mathcal{D}_{\mu} \mathcal{M}) (\mathcal{D}^{\mu} \mathcal{M}) - (\mathcal{M} \mathcal{M})^{2} \right] - \frac{16}{3} \text{Tr} \left[(\mathcal{D}_{\mu} \mathcal{T}^{\mu\alpha}) (\mathcal{D}_{\nu} \mathcal{T}^{\nu\alpha}) - (\mathcal{T}^{\mu\nu} \mathcal{T}^{\alpha\beta})^{2} \right] - 4i \text{Tr} \left[\mathcal{Y}_{\mu\nu} (\mathcal{M} \mathcal{T}^{\mu\nu} + \mathcal{T}^{\mu\nu} \mathcal{M}) \right] - 8 \text{Tr} (\mathcal{M} \mathcal{T}^{\mu\nu})^{2} \right\}$$

Renormalisation

with identified covariant parts

$$\begin{split} \left[\mathcal{Y}_{\mu\nu}\right]^{p}_{\ r} &= \left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}\right]^{p}_{\ r} = \bar{R}^{p}_{\ rIJ}(D_{\mu}\phi)^{I}(D_{\nu}\phi)^{J} + \left(\bar{\nabla}_{r}t_{A}^{p}\right)F_{\mu\nu}^{A}\,, \\ \left(\mathcal{D}_{\mu}\mathcal{M}\right)^{p}_{\ r} &= k^{p\bar{t}}(\mathcal{D}_{\mu}\mathcal{M}_{\bar{t}r}) = k^{p\bar{t}}\left[D_{\mu}\mathcal{M}_{\bar{t}r} - \bar{\Gamma}_{I\bar{t}}^{\bar{s}}(D_{\mu}\phi)^{I}\mathcal{M}_{\bar{s}r} - \bar{\Gamma}_{Ir}^{s}(D_{\mu}\phi)^{I}\mathcal{M}_{\bar{t}s}\right]\,, \\ \left(\mathcal{M}\mathcal{M}\right)^{p}_{\ r} &= k^{p\bar{t}}\mathcal{M}_{\bar{t}q}k^{q\bar{s}}\mathcal{M}_{\bar{s}r}\,, \\ \left(\mathcal{D}_{\mu}\mathcal{T}^{\alpha\beta}\right)^{p}_{\ r} &= k^{p\bar{t}}(\mathcal{D}_{\mu}\mathcal{T}^{\alpha\beta}_{\bar{t}r}) = k^{p\bar{t}}\left[D_{\mu}\mathcal{T}^{\alpha\beta}_{\bar{t}r} - \bar{\Gamma}_{I\bar{t}}^{\bar{s}}(D_{\mu}\phi)^{I}\mathcal{T}^{\alpha\beta}_{\bar{s}r} - \bar{\Gamma}_{Ir}^{s}(D_{\mu}\phi)^{I}\mathcal{T}^{\alpha\beta}_{\bar{t}s}\right]\,, \\ \left(\mathcal{T}^{\mu\nu}\mathcal{T}^{\alpha\beta}\right)^{p}_{\ r} &= k^{p\bar{t}}\mathcal{T}^{\mu\nu}_{\bar{t}q}k^{q\bar{s}}\mathcal{T}^{\alpha\beta}_{\bar{s}r}\,. \end{split}$$

Next: Pure boson and mixed variations $\eta \chi$, $\eta \zeta$, $\eta \eta$, $\zeta \zeta$ requires more understanding of supergeometry [BA, Helset, Pagès, Shen, 2411.XXXX]

SMEFT: bosons

We can apply formalism to the SMEFT by identification

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi^2 + i\phi^1 \\ \phi^4 - i\phi^3 \end{pmatrix} \qquad A^B_\mu = \begin{pmatrix} G^{\mathscr{A}}_\mu \\ W^a_\mu \\ B_\mu \end{pmatrix}$$

with scalar metric

$$h_{IJ} = \delta_{IJ} \left[1 + \frac{1}{4} \left({}^{8}C_{H^{6}D^{2}}^{(1)} - {}^{8}C_{H^{6}D^{2}}^{(2)} \right) (\phi^{K}\phi^{K})^{2} \right] + \left(-2 \ {}^{6}C_{H^{4}\Box} \right) \phi^{I}\phi^{J}$$

$$+ \frac{1}{2} \left[{}^{6}C_{H^{4}D^{2}} + {}^{8}C_{H^{6}D^{2}}^{(2)} (\phi^{K}\phi^{K}) \right] \mathcal{H}_{IJ}(\phi) ,$$

$$\mathcal{H}_{IJ}(\phi) = \phi_I \phi_J + \begin{bmatrix} \phi_2^2 & -\phi_1 \phi_2 & -\phi_2 \phi_4 & \phi_2 \phi_3 \\ -\phi_1 \phi_2 & \phi_1^2 & \phi_1 \phi_4 & -\phi_1 \phi_3 \\ -\phi_2 \phi_4 & \phi_1 \phi_4 & \phi_4^2 & -\phi_3 \phi_4 \\ \phi_2 \phi_3 & -\phi_1 \phi_3 & -\phi_3 \phi_4 & \phi_3^2 \end{bmatrix}$$

and gauge metric

$$g_{AB} = \begin{bmatrix} [g_{GG}]_{\mathscr{A}\mathscr{B}} & 0 & 0 \\ 0 & [g_{WW}]_{ab} & [g_{WB}]_a \\ 0 & [g_{BW}]_b & g_{BB} \end{bmatrix}$$

SMEFT RGEs

E.g. of **bosonic RGE** at dimension six

And dimension eight

$$\begin{split} ^8\dot{C}_{H^6D^2}^{(1)} &= -96 \ ^6C_{H^6}{}^6C_{H^4\Box} - 12 \ ^6C_{H^6}{}^6C_{H^4D^2} + \left(352\lambda + 20g_1^2 + \frac{20}{3}g_2^2\right) \left(^6C_{H^4\Box}\right)^2 \\ &+ \left(-23\lambda + \frac{1}{8}g_1^2 + \frac{161}{24}g_2^2\right) \left(^6C_{H^4D^2}\right)^2 + \left(-64\lambda - 2g_1^2 + 12g_2^2\right) {}^6C_{H^4\Box}{}^6C_{H^4D^2} \\ &- 22g_2^2 \ ^6C_{H^4\Box}{}^6C_{W^2H^2} + 6g_1^2 \ ^6C_{H^4\Box}{}^6C_{B^2H^2} - \frac{32}{3}g_1g_2 \ ^6C_{H^4\Box}{}^6C_{WBH^2} \\ &+ 8g_2^2 \ ^6C_{H^4D^2}{}^6C_{W^2H^2} + 6g_1^2 \ ^6C_{H^4D^2}{}^6C_{B^2H^2} + \frac{43}{3}g_1g_2 \ ^6C_{H^4D^2}{}^6C_{WBH^2} \\ &+ 512\lambda \left(^6C_{G^2H^2}\right)^2 + \left(192\lambda + 4g_2^2\right) \left(^6C_{W^2H^2}\right)^2 + \left(64\lambda + 12g_1^2\right) \left(^6C_{B^2H^2}\right)^2 \\ &+ \left(-3g_1^2 - 3g_2^2\right) \left(^6C_{WBH^2}\right)^2 + \frac{80}{3}g_1g_2 \ ^6C_{W^2H^2}{}^6C_{WBH^2} + \frac{8}{3}g_1g_2 \ ^6C_{B^2H^2}{}^6C_{WBH^2} \\ &+ \left(68\lambda + \frac{1}{2}g_1^2 - \frac{31}{6}g_2^2\right) {}^8C_{H^6D^2}^{(1)} + \left(-8\lambda + 7g_1^2 + \frac{17}{3}g_2^2\right) {}^8C_{H^6D^2}^{(2)} \,, \end{split}$$

SMEFT: fermonic

Again applying formalism to the SMEFT

$$H=rac{1}{\sqrt{2}}egin{pmatrix} \phi^2+i\phi^1\ \phi^4-i\phi^3 \end{pmatrix} \qquad A^B_\mu=egin{pmatrix} G^\mathscr{A}_\mu\ W^a_\mu\ B_\mu \end{pmatrix} \qquad \psi^p=egin{pmatrix} \ell^p_L\ q^p_R\ u^p_R\ d^p_R \end{pmatrix}$$
 of Lagrangian

with SM Lagrangian

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^A F^{A\mu\nu} + (D_{\mu}H)^{\dagger} (D^{\mu}H) - \lambda \left(H^{\dagger}H - \frac{1}{2}v^2 \right)^2 + \delta_{\bar{p}r} i\bar{\psi}^{\bar{p}} \gamma^{\mu} D_{\mu} \psi^r - \bar{\psi}^{\bar{p}} \mathcal{M}_{\mathrm{SM},\bar{p}r} \psi^r$$

and identifying e.g. for RH electrons in SMEFT

$$\begin{split} M_{\bar{p}r} \supset [Y_{e}]_{\bar{p}r}^{\dagger} H - {}^{6}C_{le_{\bar{p}r}^{H3}} H(H^{\dagger}H) - {}^{8}C_{le_{\bar{p}r}^{H5}} H(H^{\dagger}H)^{2} \\ T_{\bar{p}r}^{\mu\nu} \supset {}^{6}C_{le_{\bar{p}r}^{BH}} H \frac{1}{2} \left(B^{\mu\nu} - i\tilde{B}^{\mu\nu} \right) + {}^{8}C_{le_{\bar{p}r}^{H3}} H(H^{\dagger}H) \frac{1}{2} \left(B^{\mu\nu} - i\tilde{B}^{\mu\nu} \right) \\ \omega_{R,\bar{p}rI} \supset + i(\phi\gamma_{4})_{I} {}^{6}Q_{e^{2}H^{2}D}^{(1)} \end{split}$$

Bosonic fermion loop corrections

$$\begin{split} ^8\dot{C}_{H^8} = &\lambda \left(-\frac{4}{3}g_1^2 \, ^6C_{H^4D^2} - \frac{8}{3}g_1g_2 \, ^6C_{WBH^2} \right) \kappa_1 \\ &+ \left(-8g_2^2 \, ^6C_{H^6} + \lambda \left(\frac{64}{3}g_2^2 \, ^6C_{H^4\Box} - 4g_2^2 \, ^6C_{H^4D^2} - \frac{16}{3}g_1g_2 \, ^6C_{WBH^2} \right) \right) \kappa_2 \\ &+ \left(6 \, ^6C_{H^6} - 16\lambda \, ^6C_{H^4\Box} + 2\lambda \, ^6C_{H^4D^2} \right) \left(-\kappa_7 + 4\kappa_{10} + 2\kappa_{11} \right) \\ &- \frac{4}{3}\lambda g_1^2\kappa_1^{(8)} - \frac{4}{3}\lambda g_2^2\kappa_2^{(8)} - \frac{4}{3}\lambda g_2^2\kappa_3 - \frac{4}{3}\lambda g_2^2\kappa_4 - \frac{8}{3}\lambda g_1^2\kappa_5 + \frac{4}{3}\lambda g_2^2\kappa_5 + \frac{1}{3}\lambda (g_1^2 - g_2^2)\kappa_6 \\ &+ 4\lambda\kappa_1^{(8)} - 8\lambda\kappa_8 + 4\lambda\kappa_9^{(8)} + 4\lambda\kappa_{10}^{(8)} + 4\lambda\kappa_{12} - 4\lambda\kappa_{13} - 4\lambda\kappa_{14} - 4\lambda\kappa_{15} - 4\lambda\kappa_{16} \\ &- 4\lambda\kappa_{17} - 4\kappa_{21}^{(8)} + 2\kappa_{22} - \frac{20}{3}\lambda g_1g_2\tau_2 - \frac{8}{3}\lambda g_2^2\tau_3' + 4\lambda g_2\tau_{18} + 8\lambda g_1\tau_{20} + 2\lambda g_2\tau_{26} \, . \end{split}$$

$$^8\dot{C}_{H^6D^2}^{(1)} = \left(2g_1^2 \, ^6C_{H^4D^2} + \frac{16}{3}g_1g_2 \, ^6C_{WBH^2} \right) \kappa_1 \\ &+ \left(-\frac{32}{3}g_2^2 \, ^6C_{H^4\Box} + \frac{2}{3}g_2^2 \, ^6C_{H^4D^2} + 8g_1g_2 \, ^6C_{WBH^2} \right) \kappa_2 \\ &+ \left(8 \, ^6C_{H^4\Box} + \frac{6}{3}g_2^2\kappa_2^{(8)} + 2g_2^2\kappa_3 + \frac{8}{3}g_2^2\kappa_4 + 4g_1^2\kappa_5 - \frac{10}{3}g_2^2\kappa_5 - \frac{1}{2}g_1^2\kappa_6 + g_2^2\kappa_6 \right. \\ &+ 2\kappa_8 - 6\kappa_9^{(8)} - 10\kappa_{10}^{(8)} - 2\kappa_{11}^{(8)} - 6\kappa_{12} + 6\kappa_{13} + 6\kappa_{14} + 10\kappa_{15} + 6\kappa_{16} + 10\kappa_{17} \\ &+ 2\kappa_{18} - \kappa_{19} + 4\kappa_{20} + \frac{32}{3}g_1g_2\tau_2 + \frac{20}{3}g_2^2\tau_3' - 8g_2\tau_{18} - 12g_1\tau_{20} - 6g_2\tau_{26} \end{split}$$

More beyond geometry?

Recall: Higher-dim operators suppressed by $1/\Lambda$ so amp-squared SMEFT series

$$|\mathcal{A}|^2 = |A_{\rm SM}|^2 \left\{ 1 + \frac{2 \text{Re}(A_{\rm SM}^* A_6)}{\Lambda^2 |A_{\rm SM}|^2} + \frac{1}{\Lambda^4} \left(\frac{|A_6|^2}{|A_{\rm SM}|^2} + \frac{2 \text{Re}(A_{\rm SM}^* A_8)}{|A_{\rm SM}|^2} \right) + \cdots \right\}$$

Key Insight: Higher-dim operator effects can grow with $E \Rightarrow$ overcome suppression by powers of $1/\Lambda$ when $E \sim \Lambda$

Geometry \leftrightarrow metric re-summation of higher-dimensional operators in $(\phi^2 \sim (HH^\dagger) \sim v^2)/\Lambda^2$ but **not** $E/\Lambda \Rightarrow$ **need more** for $E \gg v$

ID higher-dim multi-particle operators that grow with energy and have the most significant impact on high-energy processes

VBF Higgs production

Need process with **high** E **kinematics** \leftrightarrow amplify effects of high-dim operators

Previous work found leading operators up to $\mathcal{O}(1/\Lambda^2)$ in VBF and VH [Araz et al '20, Corbett and Martin '23]

Our aim: Argue which operators are E-enhanced and push to unconstrained $\mathcal{O}(1/\Lambda^4)$ [BA and Martin 2410.25163]

Energy-enhanced geoSMEFT operators

In regime $E\gg v$ the terms in \mathscr{A}_6 and \mathscr{A}_8 that incorporate the highest powers of E carry the largest impact

 $2 \rightarrow 3$ amplitudes have mass dimension -1 with naive scaling

[BA, Martin, In preparation]

$$\mathcal{A}_{\text{SM}} \sim g_{\text{SM}}^3 \frac{v}{E^2}, \quad \mathcal{A}_{Hq}, \mathcal{A}_{Hu,d} \sim g_{\text{SM}}^2 \frac{c_6 v}{\Lambda^2}, \quad \mathcal{A}_{q^2H^2XD}, \mathcal{A}_{q^2H^2D^3} \sim g_{\text{SM}}^2 \frac{c_8 v E^2}{\Lambda^4}, \quad \mathcal{A}_{q^4H^2} \sim \frac{c_8 v E^2}{\Lambda^4}$$

The ratio of D=8 interference piece to the D=6

$$\frac{\mathscr{A}_{SM}^*\mathscr{A}_8}{\mathscr{A}_{SM}^*\mathscr{A}_6} \sim \left(\frac{c_8}{c_6}\right) \left(\frac{E^2}{\Lambda^2}\right)$$

For fixed $\Lambda \sim {\rm TeV}$ the Wilson coefficients for E-enhanced D=6 operators such as $c_{Hq}^{(3)}\ll 1$ to be consistent with LEP

[Ellis et al. '20]

Energy-enhanced contributions to VBF

Geometry-driven basis simplifies energy counting

Lacks extra D's and allows expansion only in v/Λ

Energy counting at a vertex is dictated by the lowest-dim geoSMEFT operator

Only impacts three-particle vertices or less \Rightarrow look **beyond the geoSMEFT** operator set for E-enhanced

Operator set **process- dependent** requiring interference with SM - same chirality, color, Lorentz

Dimension 6

	Operator	relevant ψ
$Q_{H\psi}^{(1)}$	$i(\bar{\psi}_p \gamma^{\nu} \psi_r) H^{\dagger} \overleftrightarrow{D}_{\mu} H$	$\psi = \{q, u, d\}$
$Q_{H\psi}^{(3)}$	$i(\bar{\psi}\gamma^{\nu}\sigma^{I}\psi) H^{\dagger} \overleftrightarrow{D}_{\mu}\sigma_{I}H$	$\psi = \{q\}$

Remaining HVV and ffV vertices suppressed [Araz et al '20]

Dimension 8

	Operator	relevant ψ
$Q_{\psi^2 H^2 D^3}^{(1)}$	$i(\bar{\psi}_p\gamma^\mu\psi_r)\left[(D_ u H)^\dagger(D^2_{(\mu, u)}H)-(D^2_{(\mu, u)}H)^\dagger(D_ u H) ight]$	$\psi = \{q,u,d\}$
$Q_{\psi^2 H^2 D^3}^{(2)}$	$i(ar{\psi}_p \gamma^\mu \overleftrightarrow{D}_ u \psi_r) \left[(D_\mu H)^\dagger (D_ u H) + (D_ u H)^\dagger (D_\mu H) ight]$	$\psi = \{q,u,d\}$
$Q_{\psi^2 H^2 D^3}^{(3)}$	$i(\bar{\psi}_p\gamma^\mu\sigma^I\psi_r)\left[(D_ u H)^\dagger au^I(D^2_{(\mu, u)}H)-(D^2_{(\mu, u)}H)^\dagger\sigma^I(D_ u H) ight]$	$\psi = \{q\}$
$Q_{\psi^2 H^2 D^3}^{(4)}$	$i(\bar{\psi}_p \gamma^\mu \sigma^I \overleftrightarrow{D}_\nu \psi_r) \left[(D_\mu H)^\dagger \tau^I (D_\nu H) + (D_\nu H)^\dagger \tau^I (D_\mu H) \right]$	$\psi = \{q\}$

		Operator
$Q_{q^4H}^{(1)}$	I^2	$(\bar{q}_p \gamma^\mu q_r)(\bar{q}_p \gamma_\mu q_r)(H^\dagger H)$
$Q_{q^4H}^{(2)}$	I^2	$(\bar{q}_p \gamma^\mu q_r)(\bar{q}_p \gamma_\mu \sigma^I q_r)(H^\dagger \sigma^I H)$
$Q_{q^4H}^{(3)}$	I^2	$(\bar{q}_p \gamma^\mu \sigma^I q_r)(\bar{q}_p \gamma_\mu \sigma^I q_r)(H^\dagger H)$
$Q_{u^4H}^{(1)}$	I^2	$(\bar{u}_p \gamma^\mu u_r)(\bar{u}_p \gamma_\mu u_r)(H^\dagger H)$
$Q_{d^4H}^{(1)}$		$(ar{d}_p \gamma^\mu d_r) (ar{d}_p \gamma_\mu d_r) (H^\dagger H)$
$Q_{u^2d^2H}^{(1)}$	I^2	$(\bar{u}_p \gamma^\mu u_r)(\bar{d}_p \gamma_\mu d_r)(H^\dagger H)$
$Q_{q^2u^2H}^{(1)}$	I^2	$(\bar{q}_p \gamma^\mu q_r)(\bar{u}_p \gamma_\mu u_r)(H^\dagger H)$
$Q_{q^2u^2L}^{(2)}$	I^2	$(\bar{q}_p \gamma^\mu \sigma^I q_r)(\bar{u}_p \gamma_\mu u_r)(H^\dagger \sigma^I H)$
$Q_{q^2d^2L}^{(1)}$	I^2	$(ar{q}_p \gamma^\mu q_r) (ar{d}_p \gamma_\mu d_r) (H^\dagger H)$
$Q_{q^2d^2R}^{(2)}$	I^2	$(\bar{q}_p \gamma^\mu \sigma^I q_r)(\bar{d}_p \gamma_\mu d_r)(H^\dagger \sigma^I H)$

	Operator	relevant ψ
$Q_{\psi^{2}BH^{2}D}^{(1)}$	$(\bar{\psi}_p \gamma^{\nu} \psi_r) D^{\mu} (H^{\dagger} H) B_{\mu\nu}$	$\psi = \{q,u,d\}$
$Q_{\psi^2BH^2D}^{(2)}$	$i(\bar{\psi}_p \gamma^{\nu} \psi_r) (H^{\dagger} \overleftrightarrow{D}^{\mu} H) B_{\mu\nu}$	$\psi = \{q,u,d\}$
$Q_{\psi^2BH^2D}^{(3)}$	$(\bar{\psi}_p \gamma^{\nu} \sigma^I \psi_r) D^{\mu} (H^{\dagger} \sigma^I H) B_{\mu\nu}$	$\psi = \{q\}$
$Q_{\psi^2BH^2D}^{(4)}$	$i(\bar{\psi}_p \gamma^{\nu} \sigma^I \psi_r) (H^{\dagger} \overleftrightarrow{D}^{I\mu} H) B_{\mu\nu}$	$\psi = \{q\}$
$Q_{\psi^2WH^2D}^{(1)}$	$(\bar{\psi}_p \gamma^{\nu} \psi_r) D^{\mu} (H^{\dagger} \sigma^I H) W^I_{\mu\nu}$	$\psi = \{q,u,d\}$
$Q_{\psi^2WH^2D}^{(2)}$	$i(\bar{\psi}_p \gamma^{\nu} \psi_r) (H^{\dagger} \overleftrightarrow{D}^{I\mu} H) W^I_{\mu\nu}$	$\psi = \{q,u,d\}$
$Q_{\psi^2WH^2D}^{(3)}$	$(ar{\psi}_p \gamma^ u \sigma^I \psi_r) D^\mu (H^\dagger H) W^I_{\mu u}$	$\psi = \{q\}$
$Q_{\psi^2WH^2D}^{(4)}$	$i(\bar{\psi}_p \gamma^{\nu} \sigma^I \psi_r) (H^{\dagger} \overleftrightarrow{D}^{\mu} H) W^I_{\mu\nu}$	$\psi = \{q\}$
$Q_{\psi^2WH^2D}^{(5)}$	$\epsilon_{IJK}(\bar{\psi}_p\gamma^{ u}\sigma^I\psi_r)D^{\mu}(H^{\dagger}\sigma^JH)W^K_{\mu u}$	$\psi = \{q\}$
$Q_{\psi^2WH^2D}^{(6)}$	$i\epsilon_{IJK}(\bar{\psi}_p\gamma^{\nu}\sigma^I\psi_r)(H^{\dagger}\overleftrightarrow{D}^{J\mu}H)W^K_{\mu\nu}$	$\psi = \{q\}$

From 993 to 41 E-enhanced operators for VBF up to D=8

Numerical analysis and resonant operators

Implemented LHC VBF selection cuts on $m_{j_1j_2}$ and $\Delta\eta_{j_1j_2}$ and restricted $p_{T,H} \in [200,400]\,\mathrm{GeV}$

[Araz et al '20]

Numerical analysis needed to confirm **EFT validity** up to $(D=8)^2$ terms; **minimum** $\Lambda \approx 1.2 \, {\rm TeV}$

ID'd D=8 operators with largest contributions consistent with analysis: $c_{q^2H^2D^3}^{(3)}$ and $c_{q^2H^4}^{(3)}$

Operator $c_{q^2H^2D^3}^{(4)}$ is significant but causes **EFT breakdown** at $\Lambda=1.2\,\mathrm{TeV}$ due to \hat{s}^3 scaling \Rightarrow **exclude** since requires $\Lambda>3\,\mathrm{TeV}$

Туре	$(480{ m GeV},2.5)$	SM Deviation (%)	$(600{ m GeV},3.0)$	SM Deviation (%)
SM	0.1375(2)	-	0.1239(2)	-
D=6	$0.1357(7)^{+0.0089}_{-0.0090}$	[-7.9, +5.2]	$0.1219(6)^{+0.0077}_{-0.0063}$	[-6.8, +4.5]
$D = 6 + (6 \times 6)$	$0.1355(7)^{+0.0087}_{-0.0077}$	[-7.1, +4.9]	$0.1221(6)^{+0.0080}_{-0.0065}$	[-6.8, +4.9]

Туре	$(480\mathrm{GeV},2.5)$	SM Deviation (%)	$(600\mathrm{GeV},3.0)$	SM Deviation (%)			
SM	0.1375(2)	-	0.1239(2)	-			
Coefficients at $D=8$							
$c_{q^4H^2}^{(1)}$	0.1396(2)	+1.5	0.1261(2)	+1.8			
$c_{q^4H^2}^{(2)}$	0.1367(3)	0.6	0.1234(2)	-0.4			
$c_{q^4H^2}^{(3)}$	0.1512(3)	10.0	0.1359(2)	+9.7			
$c_{d^4H^2}^{(1)}$	0.1376(2)	+0.1	0.1240(2)	+0.1			
$c_{u^4H^2}^{(1)}$	0.1380(3)	+0.4	0.1250(2)	+0.9			
$c_{u^2d^2H^2}^{(1)}$	0.1374(3)	-0.1	0.1238(2)	-0.1			
$c_{q^2d^2H^2}^{(1)}$	0.1377(3)	+0.1	0.1222(3)	-1.4			
$c_{q^2d^2H^2}^{(2)}$	0.1370(3)	-0.4	0.1237(3)	-0.2			
$c_{q^2u^2H^2}^{(1)}$	0.1372(2)	-0.2	0.1239(3)	0.0			
$c_{q^2u^2H^2}^{(2)}$	0.1385(2)	+0.7	0.1252(3)	+1.0			
$c_{q^2BH^2D}^{(1)}$	0.1374(3)	-0.1	0.1243(3)	+0.3			
$c_{q^2BH^2D}^{(3)}$	0.1374(3)	0.0	0.1243(2)	+0.2			
$c_{q^2WH^2D}^{(1)}$	0.1375(2)	+0.2	0.1241(2)	+0.2			
$c_{q^2WH^2D}^{(3)}$	0.1408(3)	+2.4	0.1270(2)	+2.5			
$c_{q^2WH^2D}^{(5)}$	0.1372(3)	-0.2	0.1240(3)	+0.1			
$c_{u^2WH^2D}^{(1)}$	0.1381(2)	+0.4	0.1241(3)	+0.2			
$c_{u^2BH^2D}^{(1)}$	0.1375(3)	0.0	0.1242(2)	+0.2			
$c_{d^2WH^2D}^{(1)}$	0.1373(3)	-0.1	0.1239(2)	0.0			
$c_{d^2BH^2D}^{(1)}$	0.1375(3)	0.0	0.1241(2)	+0.2			
$c_{q^2H^2D^3}^{(1)}$	0.1376(3)	+0.1	0.1240(2)	+0.1			
$c_{q^2H^2D^3}^{(2)}$	0.1372(3)	-0.2	0.1240(2)	+0.1			
$c_{q^2H^2D^3}^{(3)}$	0.1439(3)	+4.7	0.1299(2)	+4.8			
$c_{q^2H^2D^3}^{(4)}$ (*)	0.1419(3)	+3.2	0.1280(3)	+3.3			
$c_{u^2H^2D^3}^{(1)}$	0.1380(3)	+0.4	0.1244(3)	+0.4			
$c_{d^2H^2D^3}^{(1)}$	0.1371(2)	-0.3	0.1239(2)	0.0			

$$(D = 8)^2 > (D = 8) \times SM$$

Observable distributions

D=8 operators influence high p_T^H regions more than D=6 operators

Small c_6 **LEP constrained** values largely suppress D = 6 impacts

Angular distributions subtle differences among SMEFT operators

Operators $c_{Hq}^{(3)}$ and $c_{q^2H^2}^{(3)}$ minimally

affect angular distributions while $c_{a^2H^2D^3}^{(3)}$ causes noticeable shifts

Takeaway: Observables at high p_T^H , optimized kinematic cuts and observable correlations **needed to distinguish** D=8 operators

Crossed-process: Associated production $pp \rightarrow V(\bar{q}q)H$

Crossing initial fermion transforms VBF topology to $pp \rightarrow V(\bar{q}q)H$

Simulated $pp \rightarrow Z(\bar{q}q)H$ with $75~{\rm GeV} \leq p_{{\rm T},{\rm Z}} \leq 400~{\rm GeV}$ and $70 \leq m_{jj} \leq 110~{\rm GeV} \leftrightarrow$ STSX binning strategy [Corbett et al '23]

Operator $c_{H^2Q^2D^3}^{(3)}$ significantly impacts $p_{T,H}$ affecting both VBF and $V\!H$ production

Operator $c_{H^2Q^4}^{(3)}$ negligible effect on VH production since analysis cuts break crossing symmetry \Rightarrow deviations only in VBF

Recap

Provided geometric framework for both bosons and fermions

Applied geometric formulation to calculate one-loop bosonic RGEs up to D=8

Dimension-eight operators significantly impact VBF Higgs production when dimensionsix operators are constrained

Developed E-enhanced arguments \rightarrow small subset of operators have large impact at high-E offsetting their higher-dimensional suppression

What next

- 1) Completing fermion story in super-geometry and obtain remaining 1-loop RGEs fermonic, boson and mixed [BA, A. Helset, J.Pagès, C.Shen, 2411.XXXX]
- 2) Understanding higher-derivative geometry
- 3) Fully incorporating gauge bosons gauge-invariantly [Cohen et al. '22, Craig et al. '23,...]
- 4) Provide a more general prescription to identify energy-enhanced operators

 [BA, Martin, In preparation]
- 5) Combined VBF di-Higgs and single Higgs analyses to enhance sensitivity to dimension-eight operators

Back-up

Geometric quantities

As before we have **Christoffel symbols**

$$\bar{\Gamma}_{JK}^{I} = \Gamma_{JK}^{I}$$

$$\bar{\Gamma}_{Is}^{p} = \bar{\Gamma}_{sI}^{p} = k^{p\bar{r}} \left(\frac{1}{2} k_{\bar{r}s,I} + \omega_{\bar{r}sI} \right)$$

$$\bar{\Gamma}_{I\bar{s}}^{\bar{p}} = \bar{\Gamma}_{\bar{s}I}^{\bar{p}} = \left(\frac{1}{2} k_{\bar{s}r,I} - \omega_{\bar{s}rI} \right) k^{r\bar{p}}$$

Satisfying metric compatibility

$$\nabla_I k_{\bar{b}a} = \partial_I k_{\bar{b}a} - k_{\bar{c}a} \Gamma^{\bar{c}}_{I\bar{b}} - k_{\bar{b}d} \Gamma^{d}_{Ia} = 0$$

and Riemann curvature

$$\bar{R}_{\bar{p}rIJ} = \omega_{\bar{p}rJ,I} - \left(\frac{1}{2}k_{\bar{p}s,I} - \omega_{\bar{p}sI}\right)k^{s\bar{t}}\left(\frac{1}{2}k_{\bar{t}r,J} + \omega_{\bar{t}rJ}\right) - (I \leftrightarrow J)$$

Summary

Dimension-eight operators significantly impact VBF Higgs production when dimension-six operators are constrained

Developed E-enhanced arguments \rightarrow small subset of operators have large impact at high-E offsetting their higher-dimensional suppression

Identified operators of type $q^2H^2D^3$ and q^4H^2 which cause significant deviations in high-E distributions

Outlook

- 1) Provide a more general prescription to identify energy-enhanced operators [BA, Martin, In preparation]
- 2) Study more high-E processes e.g. di-Higgs where dimension-six operators are constrained to uncover dimension-eight effects
- 3) Combined VBF di-Higgs and single Higgs analyses to enhance sensitivity to dimension-eight operators

Scattering amplitudes

Similarly for 5-point amplitude

$$\begin{split} \mathcal{A}_{pI\bar{r}JK} &= (\bar{u}_{\bar{r}} \not\!\!{p}_{J} u_{p}) \bar{\nabla}_{K} \bar{R}_{\bar{r}pIJ} + (\bar{u}_{\bar{r}} \not\!\!{p}_{K} u_{p}) \bar{\nabla}_{J} \bar{R}_{\bar{r}pIK} \\ &+ k^{s\bar{t}} \Bigg\{ \frac{\mathcal{M}_{\bar{t}p;J}}{s_{pJ}} \bar{R}_{\bar{r}sIK} (\bar{u}_{\bar{r}} \not\!\!{p}_{K} \not\!\!{p}_{J} u_{p}) + \frac{\mathcal{M}_{\bar{r}s;J}}{s_{\bar{r}J}} \bar{R}_{\bar{t}pKI} (\bar{u}_{\bar{r}} \not\!\!{p}_{J} \not\!\!{p}_{K} u_{p}) + (IJK) \Bigg\} \\ &+ \Bigg\{ \frac{k^{s\bar{t}} k^{n\bar{o}}}{s_{pJ} s_{\bar{r}I}} \mathcal{M}_{\bar{r}n;I} \mathcal{M}_{\bar{o}s;K} \mathcal{M}_{\bar{t}p;J} (\bar{u}_{\bar{r}} \not\!\!{p}_{I} \not\!\!{p}_{J} u_{p}) + (I \leftrightarrow J \leftrightarrow K) \Bigg\} \\ &+ \Bigg\{ (\bar{u}_{\bar{r}} \not\!\!{p}_{K} u_{p}) \frac{1}{2} \Bigg[- \frac{V_{;IJM}}{s_{IJ}} h^{ML} \Bigg[\bar{R}_{\bar{r}pLK} + k^{s\bar{t}} \left(\frac{\mathcal{M}_{\bar{r}s;K} \mathcal{M}_{\bar{t}p;L}}{s_{\bar{r}K}} - \frac{\mathcal{M}_{\bar{r}s;L} \mathcal{M}_{\bar{t}p;K}}{s_{pK}} \right) \Bigg] \\ &+ k^{s\bar{t}} \left(\frac{\mathcal{M}_{\bar{r}s;K} \mathcal{M}_{\bar{t}a;IJ}}{s_{\bar{r}K}} - \frac{\mathcal{M}_{\bar{r}s;IJ} \mathcal{M}_{\bar{t}p;K}}{s_{pK}} \right) \Bigg] + (I \leftrightarrow J \leftrightarrow K) \Bigg\} \\ &+ (\bar{u}_{\bar{r}} u_{p}) \Bigg\{ - \mathcal{M}_{\bar{r}p;KJI} + \frac{\mathcal{M}_{\bar{r}p;L}}{s_{p\bar{r}}} h^{LM} \bar{R}_{KJIM} (s_{IK} - s_{JI}) + \frac{\mathcal{M}_{\bar{r}p;M}}{s_{p\bar{r}}} h^{ML} V_{;KJIL} \\ &+ \Bigg[\frac{1}{2} \frac{V_{;IJM}}{s_{IJ}} h^{ML} \left(\mathcal{M}_{\bar{r}p;KL} - \frac{\mathcal{M}_{\bar{r}p;N}}{s_{p\bar{r}}} h^{NO} V_{;OKL} \right) + (I \leftrightarrow J \leftrightarrow K) \Bigg] \Bigg\} \end{split}$$

Again amplitudes group into geometric invariants!

Scalar-gauge scattering

Some **Born amplitudes for** massless fields $\phi_I \phi_J \rightarrow \phi_K \phi_L$

$$\mathcal{A}_{IJKL} = R_{IJKL}s_{IK} + R_{IKJL}s_{IJ}$$

$$+ \frac{(t_{I;J} \cdot t_{K;L})(s_{IL} - s_{IK})}{s_{IJ}} + \frac{(t_{I;K} \cdot t_{J;L})(s_{IL} - s_{IJ})}{s_{IK}} + \frac{(t_{I;L} \cdot t_{K;J})(s_{IJ} - s_{IK})}{s_{IL}}$$

and $\phi_I \phi_J \rightarrow A_A A_B$

$$\mathcal{A}_{IJAB} = \left(\nabla_{I}\nabla_{J}g_{AB} - \frac{1}{2}(\nabla_{I}g_{AC})g^{CD}(\nabla_{J}g_{BD}) - \frac{1}{2}(\nabla_{J}g_{AC})g^{CD}(\nabla_{I}g_{BD})\right)B_{1}$$
$$-\left(\frac{(\nabla_{I}g_{AC})g^{CD}(\nabla_{J}g_{BD})}{s_{IA}} + \frac{(\nabla_{J}g_{AC})g^{CD}(\nabla_{I}g_{BD})}{s_{JA}}\right)B_{2} + \dots$$

Again amplitudes depend on geometric invariants!

Goal: bottom-up EFT to systematically classify "all" BSM physics (knowledge of UV **not required**)

Assumptions: new nearly physics decoupled $\Rightarrow \Lambda \sim$ few TeV $\gg v$ and at the accessible scale only SM fields + symmetries

Extensive studies done for \mathcal{L}_6 and much available:

- 1) Complete RGEs and various 1-loop results
- 2) Tools for matching and numerical analysis
- 3) Many tree-level calculations of EW, Higgs, & flavour observables

Similarly but to much lesser extent for \mathscr{L}_8 (RGEs and tree-level)

Bosonic

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\daggerarphi)^3$	Q_{earphi}	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$Q_{arphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	Q_{uarphi}	$(arphi^\dagger arphi)(ar{q}_p u_r \widetilde{arphi})$
Q_W	$\varepsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	$Q_{arphi D}$	$\left(arphi^\dagger D^\mu arphi ight)^\star \left(arphi^\dagger D_\mu arphi ight)$	Q_{darphi}	$(arphi^\daggerarphi)(ar{q}_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 arphi^2 D$	
$Q_{arphi G}$	$arphi^\dagger arphi G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi\widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(ar{l}_p\sigma^{\mu u}e_r)arphi B_{\mu u}$	$Q_{arphi l}^{(3)}$	$\left \; (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}) \; \right $
$Q_{arphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{arphi\widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{arphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{arphi q}^{(3)}$	$\left \; (\varphi^\dagger i \overleftrightarrow{D}_\mu^I \varphi) (\bar{q}_p \tau^I \gamma^\mu q_r) \; \right $
$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{arphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{arphi\widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{arphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Fermionic

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(ar{L}L)(ar{R}R)$	
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(ar{e}_p\gamma_{\mu}e_r)(ar{d}_s\gamma^{\mu}d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(ar{u}_p\gamma_\mu u_r)(ar{d}_s\gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) $
		$Q_{ud}^{(8)}$	$\left \; (ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t) \; \right $	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)$	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating		
Q_{ledq}	$egin{array}{c c} Q_{ledq} & (ar{l}_p^j e_r) (ar{d}_s q_t^j) \end{array}$		$Q_{duq} \qquad \qquad \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(q_s^{\gamma j})^T C l_t^k \right]$		
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$				
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$Q_{duu} \qquad \qquad \varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$		
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$				

The gauge metric entries

$$\begin{split} g_{GG} &= \left[1-2 \ ^6C_{G^2H^2}(\phi^I\phi^I) - ^8C_{G^2H^4}(\phi^I\phi^I)^2\right] \mathbbm{1}_{8\times 8} \,, \\ [g_{WW}]_{ab} &= \left[1-2 \ ^6C_{W^2H^2}(\phi^I\phi^I) - ^8C_{W^2H^4}^{(1)}(\phi^I\phi^I)^2\right] \mathbbm{1}_{3\times 3} - 4 \ ^8C_{W^2H^4}^{(2)}x_a(\phi)x_b(\phi) \,, \\ [g_{WB}]_a &= [g_{BW}]_a = \left(2 \ ^6C_{WBH^2} + ^8C_{WBH^4}\right)x_a \,, \\ g_{BB} &= \left[1-2 \ ^6C_{B^2H^2}(\phi^I\phi^I) - ^8C_{B^2H^4}(\phi^I\phi^I)^2\right] \,. \end{split}$$

and Riemann curvature

$$\begin{split} R_{IJKL} = & -2^{-6}C_{H^4\square}(\delta_{IK}\delta_{JL} - \delta_{IL}\delta_{JK}) - \frac{1}{2}^{6}C_{H^4D^2}\sum_{a=1}^{4}\left([\Upsilon_a]_{IK}[\Upsilon_a]_{JL} - [\Upsilon_a]_{IL}[\Upsilon_a]_{JK}\right) \\ & - \left(4\left(^{6}C_{H^4\square}\right)^2 + ^{8}C_{H^6D^2}^{(1)} - ^{8}C_{H^6D^2}^{(2)}\right)(\phi^R\phi^R)(\delta_{IK}\delta_{JL} - \delta_{IL}\delta_{JK}) \\ & + \left(^{8}C_{H^6D^2}^{(1)} - ^{8}C_{H^6D^2}^{(2)}\right)(\delta_{JK}\phi_I\phi_L + \delta_{IL}\phi_J\phi_K - \delta_{JL}\phi_I\phi_K - \delta_{IK}\phi_J\phi_L) \\ & + \text{dimension-eight Υ terms} \,, \end{split}$$

Some **bosonic** operators at **dimension six**

$${}^{6}\mathcal{L}_{\mathrm{SMEFT}}^{(6)} = C_{H^{6}}(H^{\dagger}H)^{3} + C_{H^{4}D^{2}}(H^{\dagger}H)\Box(H^{\dagger}H) + C_{H^{4}D^{2}}(D_{\mu}H^{\dagger}H)(H^{\dagger}D^{\mu}H) + C_{H^{2}B^{2}}(H^{\dagger}H)B_{\mu\nu}B^{\mu\nu} + \dots$$

Some operators at dimension eight

$${}^{8}\mathcal{L}_{\text{SMEFT}} = C_{H^{8}}(H^{\dagger}H)^{4} + C_{H^{6}D^{2}}^{(1)}(H^{\dagger}H)^{2}(D_{\mu}H^{\dagger}D^{\mu}H) + C_{H^{6}D^{2}}^{(2)}(H^{\dagger}H)(H^{\dagger}\tau^{a}H)(D_{\mu}H^{\dagger}\tau^{a}D^{\mu}H) + C_{H^{4}B^{2}}(H^{\dagger}H)^{2}B_{\mu\nu}B^{\mu\nu} + \dots$$

Dimension 6 and 8 matching coefficients in Lagrangian

$${}^{6}C_{H^{6}}, {}^{6}C_{H^{4}\square}, {}^{6}C_{H^{4}D^{2}}, {}^{6}C_{G^{2}H^{2}}, {}^{6}C_{W^{2}H^{2}}, {}^{6}C_{B^{2}H^{2}}, {}^{6}C_{WBH^{2}},$$

$${}^{8}C_{H^{8}}, {}^{8}C_{H^{6}D^{2}}^{(1)}, {}^{8}C_{H^{6}D^{2}}^{(2)}, {}^{8}C_{G^{2}H^{4}}^{(1)}, {}^{8}C_{W^{2}H^{4}}^{(1)}, {}^{8}C_{W^{2}H^{4}}^{(3)}, {}^{8}C_{B^{2}H^{4}}^{(1)}, {}^{8}C_{WBH^{4}}^{(1)}$$

The **RGEs** dependent on coefficients above were determined

Renormalisation

One-loop RGE from 2nd variation of action [t'Hoo

[t'Hooft '74, Alonso, Manohar et al '20]

$$\begin{split} A^{B\mu_B} &= \mathsf{A}^{B\mu_B} + \zeta^{B\mu_B} - \frac{1}{2} \widetilde{\Gamma}^{(B\mu_B)}_{jk} \eta^j \eta^k + \dots \\ \phi^I &= \Phi^I + \eta^I - \frac{1}{2} \widetilde{\Gamma}^I_{jk} \eta^j \eta^k + \dots \end{split} \qquad \eta^i = \begin{pmatrix} \eta^I \\ \zeta^{A\mu_A} \end{pmatrix}$$

in **geodesic coordinates**

gives **covariant** result e.g. $\eta\eta$ -variation

$$\delta_{\eta\eta}S = \frac{1}{2} \int d^4x \left\{ h_{IJ} \left(\widetilde{\mathcal{D}}_{\mu} \eta \right)^I \left(\widetilde{\mathcal{D}}_{\mu} \eta \right)^J + \left[-\widetilde{R}_{IKJL} (D_{\mu}\phi)^K (D^{\mu}\phi)^L - (\nabla_I \nabla_J V) \right. \right.$$
$$\left. - \frac{1}{4} \left(\nabla_I \nabla_J g_{AB} - \Gamma_{IA}^C g_{CB,J} - \Gamma_{IB}^C g_{AC,J} \right) F^{A\mu\nu} F_{\mu\nu}^B - h_{IK} h_{JL} g^{AB} t_A^K t_B^L \right] \eta^I \eta^J \right\}$$

Scalar amplitudes

5-point amplitude $\phi_I\phi_J o \phi_K\phi_L\phi_M$

$$A_{IJKLM}^{5} = \nabla_{M}R_{IJKL}(s_{LM} + s_{JL}) + \nabla_{K}R_{ILJM}s_{LM} + \nabla_{L}R_{IKJM}s_{KM} + \nabla_{L}R_{IJKM}s_{JM} + \nabla_{M}R_{IKJL}s_{KL}$$

Including 4-derivative interactions

$$A_{IJKL}^4 \supset \frac{1}{2} \lambda_{IJKL} s_{IJ} s_{KL} + \frac{1}{2} \lambda_{IKJL} s_{IK} s_{JL} + \frac{1}{2} \lambda_{JKIL} s_{JK} s_{IL}$$

$$A_{IJKLM}^{5} \supset \frac{1}{2} \nabla_{M} \lambda_{IJKL} s_{IJ} s_{KL} + \frac{1}{2} \nabla_{M} \lambda_{IKJL} s_{IK} s_{JL} + \frac{1}{2} \nabla_{M} \lambda_{JKIL} s_{JK} s_{IL} + \text{cylic}$$

New **soft theorem** for theory of scalars with no potential [Alonso et al '20]

$$\lim_{q_i \to 0} A_{n+1}^{i_1 \dots i_n i} = \nabla^i A_n^{i_1 \dots i_n}$$

Plus double- and triple-soft theorems - generalises the double-soft theorem for pions [Arkani-Hamed et al '08]

Scalar field EFT

Scalar field theory up to two-derivatives

[Alonso, Manohar et al 1605.0360]

$$\mathcal{L} = \frac{1}{2} h_{IJ}(\boldsymbol{\phi}) (\partial_{\mu} \phi)^{I} (\partial^{\mu} \phi)^{J} - I(\boldsymbol{\phi})$$

Expanding metric $h_{IJ}(\phi) \Rightarrow$ higher-dim operators \leftrightarrow vertices

$$h_{IJ} = h_{IJ} + h_{IJ,K}\phi^{K} + h_{IJ,KL}\phi^{K}\phi^{L} + \dots$$

 $+ h_{JK,LI} \, p_J \cdot p_K + h_{JL,IK} \, p_J \cdot p_L - h_{KL,IJ} \, p_K \cdot p_L) + i \, \mathcal{I}_{,IJKL}$

$$\begin{array}{ll} \mathbf{I} & \overset{p}{\longrightarrow} & \mathbf{J} & = i \, \frac{h^{IJ}}{p^2} \\ \mathbf{I} & \overset{p_{I}}{\longrightarrow} & \mathbf{K} \\ \mathbf{J} & \overset{p_{K}}{\longrightarrow} & \mathbf{K} \\ \mathbf{J} & & = i \, (h_{JK,I}(p_J \cdot p_K) + h_{IK,J}(p_I \cdot p_K) - h_{IJ,K}(p_I \cdot p_J)) + i \, \mathcal{I}_{,IJK} \\ \mathbf{I} & & p_{I} & \mathbf{K} \\ \mathbf{J} & & p_{I} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & p_{I} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & p_{I} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & p_{I} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & p_{I} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & p_{I} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & p_{I} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & p_{I} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & p_{I} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & \mathbf{J} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & \mathbf{J} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & \mathbf{J} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & \mathbf{J} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & \mathbf{J} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & \mathbf{J} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & \mathbf{J} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & \mathbf{J} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & \mathbf{J} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & \mathbf{J} & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & & \mathbf{J} \\$$

Analysis of energy-enhanced contributions to VBF

Consider $qV \rightarrow q'H$ as proxy for VBF to ID most enhanced SMEFT operators

High-E limit $\hat{t}\gg m_V$ with V_L effects grow the strongest with E once $qV\to q'H$ embedded in VBF

$$\mathcal{A}(qZ_{L,\mu} \to qH) = -i\langle \bar{q} \, | \, \gamma_{\mu} p_{H}^{\mu} \, | \, q] \frac{1}{\hat{t}} \left(g_{Zq_{L}q_{L}} g_{HZZ}^{(1)} + g_{ZHq_{L}q_{L}}^{(1)} \frac{\hat{t}}{\Lambda^{2}} + (g_{ZHq_{L}q_{L}}^{(2)} - g_{ZHq_{L}q_{L}}^{(3)}) \frac{\hat{t}^{2}}{2\Lambda^{4}} \right)$$

4-particle contact terms scale with higher powers of \hat{t}

$$\mathcal{A}(qW_{L,\mu} \to q'H) \underset{\hat{t} \gg m_{W,H}^2}{=} -i \langle \bar{q} \, | \, \gamma_{\mu} p_H^{\mu} \, | \, q] \frac{1}{\hat{t}} \bigg(g_{Wq_Lq'_L} g_{HWW}^{(1)} + g_{WHq_Lq'_L}^{(1)} \frac{\hat{t}}{\Lambda^2} + (g_{WHq_Lq'_L}^{(2)} - g_{WHq_Lq'_L}^{(4)}) \frac{\hat{t}^2}{2\Lambda^4} - g_{WHq_Lq'_L}^{(3)} \frac{\hat{t} \, (2\hat{s} + \hat{t})}{2\Lambda^4} \bigg)$$

New terms involving quark momenta $\propto \hat{s}\hat{t}$ and **dominate** when \hat{s} is large but \hat{t} remains small; other SMEFT contributions are **suppressed** by \hat{t}

Total cross-sections

Effective W approximation: treating incoming W as proton constituent in the $2 \to 3$ process \Rightarrow convolving the W-boson PDF with the $qV \to q'H$ in the limit $\hat{t} \to 0$ [Dawson '84]

Dominant D=6 terms are suppressed at large \hat{s} with $W_T \Rightarrow$ Focus on W_L

$$\int_{-\infty}^{\theta_{\text{max}}} d\theta^* 2 \operatorname{Re}(A_{\text{SM}} A^{(6)})_{W_L} \sim \frac{v^2 \,\hat{s}}{\Lambda^2 \, m_W^2} \qquad \int_{-\infty}^{\theta_{\text{max}}} d\theta^* \, |A^{(6)}|_{W_L}^2 \sim \frac{v^2 \,\hat{s}}{\Lambda^4},$$

Dominant D=8 interference terms from operators leads to different scaling for $\sim c_{q^2H^2D^3}^{(3)}, c_{q^2H^2WD}^{(3)}$ vs. $c_{q^2H^2D^3}^{(4)} \leftrightarrow$ operators with different Lorentz structures

$$\int_{-\infty}^{\theta_{\text{max}}} d\theta^* 2 \operatorname{Re}(A_{\text{SM}} A_3^{(8)})_{W_L} \sim \frac{v^2 \hat{s}^2}{\Lambda^4 m_W^2} \qquad \int_{-\infty}^{\theta_{\text{max}}} d\theta^* 2 \operatorname{Re}(A_{\text{SM}} A_{24}^{(8)})_{W_L} \sim \frac{v^2 \hat{s}}{\Lambda^4}$$

Squared terms exhibit larger differences

$$\int_{-\infty}^{\theta_{\text{max}}} d\theta^* |A_3^{(8)}|_{W_L}^2 \sim \frac{v^2 \hat{s}^3}{\Lambda^8} \qquad \int_{-\infty}^{\theta_{\text{max}}} d\theta^* |A_{24}^{(8)}|_{W_L}^2 \sim \frac{v^2 \hat{s} m_W^4}{\Lambda^8}$$

Effective W approximation

Additionally: The operator $c_{q^2H^2D^3}^{(3)}$ interferes with the SM for W_T

$$\int_{-\infty}^{\theta_{\text{max}}} d\theta^* 2 \operatorname{Re}(A_{\text{SM}} A_{24}^{(8)})_{W_T} \sim \frac{v^2 \,\hat{s}}{\Lambda^4} \qquad \int_{-\infty}^{\theta_{\text{max}}} d\theta^* \, |A_{24}^{(8)}|_{W_T}^2 \sim \frac{v^2 \,\hat{s} \, m_W^4}{\Lambda^8}$$

This weaker interference is **offset** by larger transverse W PDFs [Dawson '84]

Determining whether T or L effects dominate requires **numerical** analysis beyond $2 \rightarrow 2$ approximations

New pure contact D=8 vertices from q^4H^2 operators contribute in VBF with largest effect from (LL)(LL) helicity structures

$$\mathcal{A}(u_L d_L \to u_L d_L H) \sim v c_{q^4 H^2}^{(3)} \langle 34 \rangle [12]$$

Large # of operators ⇒ many operators can contribute to same observable

Ideal: global SMEFT fit to very precise measurement, all C_i free parameters

Reality: only partial fits are feasible since too many operators to constrain

Aim: come up with set of **observables** sensitive to a close manageable set of operators

Dominant effect: the tree-level interference e.g. $|\mathscr{A}_{\text{SM}}\mathscr{A}_{d=6}^*| \sim C_i/\Lambda^2$ \Rightarrow if suppressed can neglect C_i

N.B. many studies along this vein, interesting to think up new observables

E.g. Four-fermion operator in Drell-Yan via Z-resonance

Renormalisation

One-loop RGE from 2nd variation of action in geodesic coordinates

$$\begin{split} A^{B\mu_B} &= \mathsf{A}^{B\mu_B} + \zeta^{B\mu_B} - \frac{1}{2} \widetilde{\Gamma}^{(B\mu_B)}_{jk} \eta^j \eta^k + \dots \\ \phi^I &= \Phi^I + \eta^I - \frac{1}{2} \widetilde{\Gamma}^I_{jk} \eta^j \eta^k + \dots \end{split} \qquad \qquad \eta^i = \begin{pmatrix} \eta^I \\ \zeta^{A\mu_A} \end{pmatrix} \end{split}$$

gives **covariant** result e.g. $\eta\eta$ -variation

$$\begin{split} \delta_{\eta\eta}S &= \frac{1}{2} \int d^4x \, \left\{ h_{IJ} \left(\widetilde{\mathcal{D}}_{\mu} \eta \right)^I \left(\widetilde{\mathcal{D}}_{\mu} \eta \right)^J + \left[-\widetilde{R}_{IKJL} (D_{\mu} \phi)^K (D^{\mu} \phi)^L - (\nabla_I \nabla_J V) \right. \right. \\ &\left. - \frac{1}{4} \left(\nabla_I \nabla_J g_{AB} - \Gamma_{IA}^C g_{CB,J} - \Gamma_{IB}^C g_{AC,J} \right) F^{A\mu\nu} F_{\mu\nu}^B - h_{IK} h_{JL} g^{AB} t_A^K t_B^L \right] \eta^I \eta^J \right\} \end{split}$$

with covariant derivative

$$(\widetilde{\mathcal{D}}_{\mu}\eta)^{I} = \partial_{\mu}\eta^{I} + t_{B,K}^{I}A_{\mu}^{B}\eta^{K} + \widetilde{\Gamma}_{jk}^{I}Z_{\mu}^{j}\eta^{k}$$

$$Z_{\mu}^{i} = \begin{bmatrix} (D_{\mu}\phi)^{I} \\ F_{\mu}^{A\mu_{A}} \end{bmatrix}$$

similarly for gauge $\zeta\zeta$ and mixed $\zeta\eta$ variation

HEFT LEFT and ALP-SMEFT

HEFT: SMEFT ⊂ HEFT with HEFT a fusion of ChPT in scalar sector and SMEFT in gauge & fermion sector, HEFT has 3 goldstones embedded in matrix plus one gauge singlet Higgs ⇒ HEFT = SMEFT + no assumptions about Higgs scalar being in doublet

ALP-SMEFT: EFTs to describe interactions of axion our axion-like particles which are not present in SMEFT or HEFT

Below EW scale: can write low energy effective theory (LEFT) with quark and lepton fields, and only QCD and QED gauge fields

Combining EFTs: If scales widely separated can match and run repeatedly between EFTs systematically

Data rich era spanning multiple scales

