

# Magnetic measurements on the LMQXFA01 at 1.9 K

Lucio Fiscarelli, Guy Deferne, Mariano Pentella, Piotr Rogacki, and all TM colleagues



12 September 2024

#### **Outline**

- Measurement setups: Stretched Wire and Rotating Coil
- Performed tests and results: Nominal current, Machine cycles, Stair-step cycles
- Additional results: voltage spikes
- Conclusions

Results of alignment tests are nor reported here since test are still ongoing.



### **Stretched wire**

Standard system used for Q2 and other magnets

- PI X-Y tables
- FDI integrators
- FFMM control software
- Copper beryllium wire Ø 0.125 mm
- Wire length ~21 m

A careful sag correction is required





# **Rotating coils**

#### Same system used on the Q2

- 6-segment rotating shaft
- Each segment is 1.3 m + 0.1 m gap
- 12 FDI integrators
- FFMM software for control and online processing
- Continuous measurement at 1 turn/s

Not optimal for Q3





# **Rotating coils**



Shaft too short to cover at the same time both magnets

- Two measurement positions
- Cycles repeated twice



### **Performed tests**

Performed tests

- Integrated gradient with Stretched wire
  - Nominal current
- Field quality with Rotating Coils
  - Machine cycles and Stair-step cycles





L. Fiscarelli - Magnetic measurements on the LMQXFA01 at 1.9 K

## Main field and magnetic length

| Current             | А      | 16230  |        |          |     |         |  |  |  |
|---------------------|--------|--------|--------|----------|-----|---------|--|--|--|
|                     |        |        |        |          |     |         |  |  |  |
|                     |        | A03    | A04    | Integral |     |         |  |  |  |
|                     |        |        |        |          |     |         |  |  |  |
| CERN                |        |        |        |          |     |         |  |  |  |
|                     |        |        |        |          |     |         |  |  |  |
| Integrated gradient | Т      | 559.53 | 559.62 | 1119.15  | SSW | 1119.03 |  |  |  |
| Central gradient TF | T/m/kA | 8.1790 | 8.1828 |          |     |         |  |  |  |
| Lm                  | m      | 4.215  | 4.214  |          |     |         |  |  |  |
| Nodal distance      | m      | 4.770  |        |          |     |         |  |  |  |
|                     |        |        |        |          |     |         |  |  |  |
|                     |        |        |        |          |     |         |  |  |  |
| FNAL                |        |        |        |          |     |         |  |  |  |
|                     |        |        |        |          |     |         |  |  |  |
| Integrated gradient | Т      | 559.70 | 559.95 | 1119.60  |     |         |  |  |  |
| Difference          | units  | 8      | 1      | 4        |     |         |  |  |  |
|                     |        |        |        |          |     |         |  |  |  |
| Nodal distance      | m      | 4.772  |        |          |     |         |  |  |  |
| Difference          | mm     | -2     |        |          |     |         |  |  |  |



# Sag correction on stretched wire



- The gradient measured with a vertical displacement (GY) is affected both by gravity and wire diamagnetism: correction is more difficult
- The gradient measured with a horizontal displacement (GX) is affected mainly by the wire diamagnetism: more effective extrapolation



### Field quality at nominal 16230 A

| Current 16230 A |       |       |           |  |     |       |       |           |  |
|-----------------|-------|-------|-----------|--|-----|-------|-------|-----------|--|
|                 | A04   | A03   | Integral* |  |     | A04   | A03   | Integral* |  |
| b3              | 1.39  | 0.46  | 0.93      |  | a3  | -1.36 | 1.35  | -1.36     |  |
| b4              | -0.09 | -1.18 | -0.64     |  | a4  | 2.03  | 1.76  | 0.13      |  |
| b5              | -0.40 | 1.62  | 0.61      |  | a5  | -0.93 | 1.90  | -1.42     |  |
| b6              | -0.47 | -2.87 | -1.67     |  | a6  | -1.19 | -0.28 | -0.45     |  |
| b7              | -0.15 | 0.20  | 0.03      |  | a7  | 0.27  | -0.12 | 0.19      |  |
| b8              | 0.12  | 0.09  | 0.10      |  | a8  | -1.49 | -0.57 | -0.46     |  |
| b9              | 0.06  | 0.13  | 0.10      |  | a9  | -0.08 | 0.05  | -0.07     |  |
| b10             | 0.27  | 0.33  | 0.30      |  | a10 | -0.15 | -0.03 | -0.06     |  |
| b11             | 0.09  | 0.14  | 0.11      |  | a11 | -0.01 | 0.05  | -0.03     |  |
| b12             | -0.02 | -0.01 | -0.01     |  | a12 | 0.07  | 0.03  | 0.02      |  |
| b13             | 0.17  | 0.14  | 0.15      |  | a13 | -0.11 | 0.19  | -0.15     |  |
| b14             | -0.95 | -0.97 | -0.96     |  | a14 | 0.15  | 0.02  | 0.07      |  |
| b15             | 0.00  | 0.00  | 0.00      |  | a15 | 0.00  | 0.01  | -0.01     |  |

Harmonics are given in units at the reference radius of 50 mm

\* reference frame of A04



# Field quality at nominal



Lines show the expected range at  $\pm(3+1) \sigma$ 



# Field quality at injection current (960 A)

| Current 960 A (precycle at 16230 A and reset at 200 A) |       |       |  |  |     |       |       |  |  |
|--------------------------------------------------------|-------|-------|--|--|-----|-------|-------|--|--|
|                                                        | A04   | A03   |  |  |     | A04   | A03   |  |  |
| b3                                                     | -1.08 | 1.32  |  |  | a3  | -0.18 | -2.38 |  |  |
| b4                                                     | -0.58 | -1.08 |  |  | a4  | -1.85 | 0.26  |  |  |
| b5                                                     | 1.11  | 1.26  |  |  | a5  | -0.07 | 1.16  |  |  |
| b6                                                     | -1.00 | -3.38 |  |  | a6  | -1.17 | -0.22 |  |  |
| b7                                                     | 0.19  | -0.22 |  |  | а7  | 0.24  | -0.52 |  |  |
| b8                                                     | 0.20  | 0.14  |  |  | a8  | -1.54 | -0.99 |  |  |
| b9                                                     | -0.41 | -0.12 |  |  | a9  | 0.18  | -0.51 |  |  |
| b10                                                    | 2.60  | 2.90  |  |  | a10 | -0.22 | 0.01  |  |  |
| b11                                                    | 0.00  | 0.09  |  |  | a11 | -0.01 | 0.04  |  |  |
| b12                                                    | 0.00  | 0.00  |  |  | a12 | 0.06  | 0.03  |  |  |
| b13                                                    | 0.15  | 0.08  |  |  | a13 | -0.07 | 0.08  |  |  |
| b14                                                    | -0.56 | -0.57 |  |  | a14 | 0.05  | 0.01  |  |  |
| b15                                                    | 0.01  | 0.00  |  |  | a15 | 0.00  | 0.02  |  |  |

Harmonics are given in units at the reference radius of 50 mm



11

### **TF vs current - ramp-up of machine cycle**





#### Harmonics vs current - ramp-up of machine cycle





#### Harmonics vs current - ramp-up of machine cycle



#### Decays after ramping – ramp up of stair-step cycle - integral



#### **Decays after ramping - individual segments on magnet A04**



The decays look uniform along the magnet length.



## **Quench antenna signals and voltage spikes**



## Conclusions

- Measurements of integral gradient and field quality performed during the first campaign at CERN
- Main results:
  - Integral gradient and nodal distance in agreement with results from AUP
  - Field quality within the expected range
  - On plateaus after ramping, some harmonics show a decay up to 2/3 units. Similar effect already seen on MQXFB magnets.
  - Quench antenna signals don't show events like the voltage spike seen on other MQXFA magnets. The events at intermediate and high current look of mechanical nature.
- Alignment measurements were not completed during first campaign. They are ongoing now.





