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e Large Hadron Collider at CERN

o More than 2 exabytes since 2010
o Stored in binary columnar format

e High-Luminosity LHC (from 2029)

o Further increase of data rate

e RNTuple: evolution of the currently
used TTree columnar format

o Opportunity to include parallel
writing from the start
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RNTuple Overview

e Serialize acyclic C++ data structures into a columnar format
o Important to support nested collections for HEP use cases

struct Event { struct Track {
int fld; float fEnergy;
std :: vector<Track> fTracks; std :: vector<int> flds;

}i b

Figure 1: Simplified example of nested data structures. Real-world HEP data models often
have thousands of fields.
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RNTuple Overview

e Recursively decompose data structures into fields
o Columns at leafs of field tree: primitive, fixed-size types

e Columns partitioned into pages
o Transparently compressed (default for RNTuple: Zstandard)

e (luster: all pages of a consecutive range of rows, or entries
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RNTuple Overview ﬁ

Table 1: Example of columnar representation for the nested data structure shown in Figure 1.

fId | fTracks | fTracks._O.fEnergy | fTracks._0.fIds | fTracks._0.fIds._0O
6873 2 25.4f 2 42
27
32.8f 3 16
6874 3 14.7f 5 21
8
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Table 1: Example of columnar representation for the nested data structure shown in Figure 1.
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Concepts for Parallel Writing of Columnar Data

e Support for nested data implies variable row sizes

o Transparent compression leads to variable page sizes
— Data cannot be organized in a regular grid
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Concepts for Parallel Writing of Columnar Data

e Support for nested data implies variable row sizes

o Transparent compression leads to variable page sizes
— Data cannot be organized in a regular grid

e Clusters are relocatable

o Serialization and compression without synchronization
o Then: final size is known, can be written into binary file format

e Metadata updated in critical section
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Concepts for Parallel Writing of Columnar
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Figure 2: lllustration of filling three RNTuple clusters in parallel. After buffering in
memory (top), entries are appended into a sequential file (bottom).
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Evaluation of Parallel RNTuple Writing




Writing to SSD

e Evaluate weak scaling behavior for a synthetic benchmark

o Fixed number of 20 million entries per thread
o Two top-level fields: “event ID" and a vector of floats
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Writing to SSD

e Evaluate weak scaling behavior for a synthetic benchmark

o Fixed number of 20 million entries per thread
o Two top-level fields: “event ID" and a vector of floats

e Write data on Samsung PM1733 NVMe SSD formatted with ext4

o Measured bandwidth with Flexible 1/O Tester (fio): 768 MB/s
o Possible optimization: pre-allocate file with fallocate
o Increases bandwidth to 1062 MB/s
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Writing to SSD ﬁ
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Figure 4: Bandwidth measured with the synthetic benchmark writing on a server SSD.!

!Figure adapted from the paper, see Backup Slide 3 for the original plot.
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Dataset Skimming of the Analysis Grand Challenge ﬁ

e Analysis Grand Challenge: test workflows at scales required for HL-LHC

o “ttbar” analysis, input dataset derived from 2015 Open Data of the CMS experiment
o Conversion to RNTuple: 969 GB across 787 files, divided into nine partitions
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Dataset Skimming of the Analysis Grand Challenge ﬁ

e Analysis Grand Challenge: test workflows at scales required for HL-LHC

o “ttbar” analysis, input dataset derived from 2015 Open Data of the CMS experiment
o Conversion to RNTuple: 969 GB across 787 files, divided into nine partitions

e Evaluation benchmark: reduce size of the dataset by skimming

o Retain only fields used by analysis, filter events (entries) based on coarse cuts
o Qutput: nine files, total size of 19 GB
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Dataset Skimming of the Analysis Grand Challenge ﬁ
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= 8 - | -+-separate files
§ n || —=— files merged after writing
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Figure 6: Speedup of the AGC dataset skimming benchmark compared to a full sequential run.

'ROOT's implicit multithreading (IMT) used to parallelize compression of pages.

2TBuf ferMerger merges files in memory. It is the current way of parallel writing in ROOT.
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e Presented concept for parallel writing of nested data in columnar formats
e Implemented for RNTuple: https://github.com/root-project/root/

e Evaluation with synthetic benchmark and application of dataset skimming
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Conclusions and Future Work

Presented concept for parallel writing of nested data in columnar formats

Implemented for RNTuple: https://github.com/root-project/root/

Evaluation with synthetic benchmark and application of dataset skimming

Synthetic benchmark scales up to storage bandwidth limit

o Plan to investigate usage of Direct |/O
— Presentation at CHEP 2024 in October

Extend parallel writing to process-level parallelism

Distributed parallelism with MPI and writing to cluster filesystems
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LHC Long Term Schedule
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Writing to /dev/null
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Writing to HDD
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Direct 1/0O — Writing to SSD, no compression — preliminary ﬁ
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