
Parallel Writing of Nested Data in Columnar Formats

Jonas Hahnfeld1,2 Jakob Blomer1 Thorsten Kollegger2

jonas.hahnfeld@cern.ch
1 CERN, Geneva, Switzerland

2 Goethe University Frankfurt, Institute of Computer Science, Frankfurt, Germany

Euro-Par 2024 – August 29, 2024

mailto:jonas.hahnfeld@cern.ch


Motivation

• Large Hadron Collider at CERN
◦ More than 2 exabytes since 2010
◦ Stored in binary columnar format

• High-Luminosity LHC (from 2029)
◦ Further increase of data rate

• RNTuple: evolution of the currently
used TTree columnar format

◦ Opportunity to include parallel
writing from the start
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RNTuple Overview

• Serialize acyclic C++ data structures into a columnar format
◦ Important to support nested collections for HEP use cases

s t r u c t Event {
i n t f I d ;
s t d : : v e c to r <Track> fTrack s ;

} ;

s t r u c t Track {
f l o a t fEne rgy ;
s t d : : v e c to r <i n t > f I d s ;

} ;

Figure 1: Simplified example of nested data structures. Real-world HEP data models often
have thousands of fields.
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RNTuple Overview

• Recursively decompose data structures into fields
◦ Columns at leafs of field tree: primitive, fixed-size types

• Columns partitioned into pages
◦ Transparently compressed (default for RNTuple: Zstandard)

• Cluster: all pages of a consecutive range of rows, or entries
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RNTuple Overview

Table 1: Example of columnar representation for the nested data structure shown in Figure 1.

fId fTracks fTracks._0.fEnergy fTracks._0.fIds fTracks._0.fIds._0
6873 2 25.4f 2 42

27
32.8f 3 16

6874 3 14.7f 5 21
8

...
...

...
...

...
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Concepts for Parallel Writing of Columnar Data

• Support for nested data implies variable row sizes
◦ Transparent compression leads to variable page sizes

→ Data cannot be organized in a regular grid

• Clusters are relocatable
◦ Serialization and compression without synchronization
◦ Then: final size is known, can be written into binary file format

• Metadata updated in critical section
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Concepts for Parallel Writing of Columnar Data

7 entries 3 entries 5 entries

. . .

. . . – #59 entries #60 – #64 entries #65 – #71

. . .

#72 – . . .

Figure 2: Illustration of filling three RNTuple clusters in parallel. After buffering in
memory (top), entries are appended into a sequential file (bottom).
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Evaluation of Parallel RNTuple Writing



Writing to SSD

• Evaluate weak scaling behavior for a synthetic benchmark
◦ Fixed number of 20 million entries per thread
◦ Two top-level fields: “event ID” and a vector of floats

• Write data on Samsung PM1733 NVMe SSD formatted with ext4
◦ Measured bandwidth with Flexible I/O Tester (fio): 768 MB/s

◦ Possible optimization: pre-allocate file with fallocate
◦ Increases bandwidth to 1062 MB/s
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Writing to SSD
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Figure 4: Bandwidth measured with the synthetic benchmark writing on a server SSD.1

1Figure adapted from the paper, see Backup Slide 3 for the original plot.
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Dataset Skimming of the Analysis Grand Challenge

• Analysis Grand Challenge: test workflows at scales required for HL-LHC
◦ “ttbar” analysis, input dataset derived from 2015 Open Data of the CMS experiment
◦ Conversion to RNTuple: 969 GB across 787 files, divided into nine partitions

• Evaluation benchmark: reduce size of the dataset by skimming
◦ Retain only fields used by analysis, filter events (entries) based on coarse cuts
◦ Output: nine files, total size of 19 GB
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Dataset Skimming of the Analysis Grand Challenge
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Figure 6: Speedup of the AGC dataset skimming benchmark compared to a full sequential run.

1ROOT’s implicit multithreading (IMT) used to parallelize compression of pages.
2TBufferMerger merges files in memory. It is the current way of parallel writing in ROOT.
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Conclusions and Future Work

• Presented concept for parallel writing of nested data in columnar formats
• Implemented for RNTuple: https://github.com/root-project/root/

• Evaluation with synthetic benchmark and application of dataset skimming

• Synthetic benchmark scales up to storage bandwidth limit
◦ Plan to investigate usage of Direct I/O

→ Presentation at CHEP 2024 in October

• Extend parallel writing to process-level parallelism
• Distributed parallelism with MPI and writing to cluster filesystems
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https://indico.cern.ch/event/1338689/contributions/6010002/
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LHC Long Term Schedule
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Writing to /dev/null
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Writing to SSD (original plot from the paper)
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Writing to HDD
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Direct I/O – Writing to SSD, no compression – preliminary
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