
Parallel Writing of Nested Data in Columnar Formats

Jonas Hahnfeld1,2 Jakob Blomer1 Thorsten Kollegger2

jonas.hahnfeld@cern.ch
1 CERN, Geneva, Switzerland

2 Goethe University Frankfurt, Institute of Computer Science, Frankfurt, Germany

Euro-Par 2024 – August 29, 2024

mailto:jonas.hahnfeld@cern.ch

Motivation

• Large Hadron Collider at CERN
◦ More than 2 exabytes since 2010
◦ Stored in binary columnar format

• High-Luminosity LHC (from 2029)
◦ Further increase of data rate

• RNTuple: evolution of the currently
used TTree columnar format

◦ Opportunity to include parallel
writing from the start

1 / 12

Motivation

• Large Hadron Collider at CERN
◦ More than 2 exabytes since 2010
◦ Stored in binary columnar format

• High-Luminosity LHC (from 2029)
◦ Further increase of data rate

• RNTuple: evolution of the currently
used TTree columnar format

◦ Opportunity to include parallel
writing from the start

1 / 12

Motivation

• Large Hadron Collider at CERN
◦ More than 2 exabytes since 2010
◦ Stored in binary columnar format

• High-Luminosity LHC (from 2029)
◦ Further increase of data rate

• RNTuple: evolution of the currently
used TTree columnar format

◦ Opportunity to include parallel
writing from the start

1 / 12

Outline

RNTuple Overview

Concepts for Parallel Writing of Columnar Data

Evaluation of Parallel RNTuple Writing

Conclusions and Future Work

2 / 12

RNTuple Overview

RNTuple Overview

• Serialize acyclic C++ data structures into a columnar format
◦ Important to support nested collections for HEP use cases

s t r u c t Event {
i n t f I d ;
s t d : : v e c to r <Track> fTrack s ;

} ;

s t r u c t Track {
f l o a t fEne rgy ;
s t d : : v e c to r <i n t > f I d s ;

} ;

Figure 1: Simplified example of nested data structures. Real-world HEP data models often
have thousands of fields.

3 / 12

RNTuple Overview

• Recursively decompose data structures into fields
◦ Columns at leafs of field tree: primitive, fixed-size types

• Columns partitioned into pages
◦ Transparently compressed (default for RNTuple: Zstandard)

• Cluster: all pages of a consecutive range of rows, or entries

4 / 12

RNTuple Overview

• Recursively decompose data structures into fields
◦ Columns at leafs of field tree: primitive, fixed-size types

• Columns partitioned into pages
◦ Transparently compressed (default for RNTuple: Zstandard)

• Cluster: all pages of a consecutive range of rows, or entries

4 / 12

RNTuple Overview

• Recursively decompose data structures into fields
◦ Columns at leafs of field tree: primitive, fixed-size types

• Columns partitioned into pages
◦ Transparently compressed (default for RNTuple: Zstandard)

• Cluster: all pages of a consecutive range of rows, or entries

4 / 12

RNTuple Overview

Table 1: Example of columnar representation for the nested data structure shown in Figure 1.

fId fTracks fTracks._0.fEnergy fTracks._0.fIds fTracks._0.fIds._0
6873 2 25.4f 2 42

27
32.8f 3 16

6874 3 14.7f 5 21
8

...
...

...
...

...

5 / 12

RNTuple Overview

Table 1: Example of columnar representation for the nested data structure shown in Figure 1.

fId fTracks fTracks._0.fEnergy fTracks._0.fIds fTracks._0.fIds._0
6873 2 25.4f 2 42

27
32.8f 3 16

6874 3 14.7f 5 21
8

...
...

...
...

...

5 / 12

entry

column

RNTuple Overview

Table 1: Example of columnar representation for the nested data structure shown in Figure 1.

fId fTracks fTracks._0.fEnergy fTracks._0.fIds fTracks._0.fIds._0
6873 2 25.4f 2 42

27
32.8f 3 16

6874 3 14.7f 5 21
8

...
...

...
...

...

5 / 12

entry

column

page

RNTuple Overview

Table 1: Example of columnar representation for the nested data structure shown in Figure 1.

fId fTracks fTracks._0.fEnergy fTracks._0.fIds fTracks._0.fIds._0
6873 2 25.4f 2 42

27
32.8f 3 16

6874 3 14.7f 5 21
8

...
...

...
...

...

5 / 12

entry

column

page

cluster

Concepts for Parallel Writing of Columnar Data

Concepts for Parallel Writing of Columnar Data

• Support for nested data implies variable row sizes
◦ Transparent compression leads to variable page sizes

→ Data cannot be organized in a regular grid

• Clusters are relocatable
◦ Serialization and compression without synchronization
◦ Then: final size is known, can be written into binary file format

• Metadata updated in critical section

6 / 12

Concepts for Parallel Writing of Columnar Data

• Support for nested data implies variable row sizes
◦ Transparent compression leads to variable page sizes

→ Data cannot be organized in a regular grid

• Clusters are relocatable
◦ Serialization and compression without synchronization
◦ Then: final size is known, can be written into binary file format

• Metadata updated in critical section

6 / 12

Concepts for Parallel Writing of Columnar Data

• Support for nested data implies variable row sizes
◦ Transparent compression leads to variable page sizes

→ Data cannot be organized in a regular grid

• Clusters are relocatable
◦ Serialization and compression without synchronization
◦ Then: final size is known, can be written into binary file format

• Metadata updated in critical section

6 / 12

Concepts for Parallel Writing of Columnar Data

7 entries 3 entries 5 entries

. . .

. . . – #59 entries #60 – #64 entries #65 – #71

. . .

#72 – . . .

Figure 2: Illustration of filling three RNTuple clusters in parallel. After buffering in
memory (top), entries are appended into a sequential file (bottom).

7 / 12

Evaluation of Parallel RNTuple Writing

Writing to SSD

• Evaluate weak scaling behavior for a synthetic benchmark
◦ Fixed number of 20 million entries per thread
◦ Two top-level fields: “event ID” and a vector of floats

• Write data on Samsung PM1733 NVMe SSD formatted with ext4
◦ Measured bandwidth with Flexible I/O Tester (fio): 768 MB/s

◦ Possible optimization: pre-allocate file with fallocate
◦ Increases bandwidth to 1062 MB/s

8 / 12

https://github.com/axboe/fio

Writing to SSD

• Evaluate weak scaling behavior for a synthetic benchmark
◦ Fixed number of 20 million entries per thread
◦ Two top-level fields: “event ID” and a vector of floats

• Write data on Samsung PM1733 NVMe SSD formatted with ext4
◦ Measured bandwidth with Flexible I/O Tester (fio): 768 MB/s

◦ Possible optimization: pre-allocate file with fallocate
◦ Increases bandwidth to 1062 MB/s

8 / 12

https://github.com/axboe/fio

Writing to SSD

• Evaluate weak scaling behavior for a synthetic benchmark
◦ Fixed number of 20 million entries per thread
◦ Two top-level fields: “event ID” and a vector of floats

• Write data on Samsung PM1733 NVMe SSD formatted with ext4
◦ Measured bandwidth with Flexible I/O Tester (fio): 768 MB/s
◦ Possible optimization: pre-allocate file with fallocate
◦ Increases bandwidth to 1062 MB/s

8 / 12

https://github.com/axboe/fio

Writing to SSD

1 2 4 8 16 32 64 128

25

50

100

200

400

800

threads

b
a
n
d
w
id
th

[M
B
/s
]

bandwidth limit
zstd compression
uncompressed
with fallocate

zstd compression
uncompressed

Figure 4: Bandwidth measured with the synthetic benchmark writing on a server SSD.1

1Figure adapted from the paper, see Backup Slide 3 for the original plot.
9 / 12

Dataset Skimming of the Analysis Grand Challenge

• Analysis Grand Challenge: test workflows at scales required for HL-LHC
◦ “ttbar” analysis, input dataset derived from 2015 Open Data of the CMS experiment
◦ Conversion to RNTuple: 969 GB across 787 files, divided into nine partitions

• Evaluation benchmark: reduce size of the dataset by skimming
◦ Retain only fields used by analysis, filter events (entries) based on coarse cuts
◦ Output: nine files, total size of 19 GB

10 / 12

https://agc.readthedocs.io/

Dataset Skimming of the Analysis Grand Challenge

• Analysis Grand Challenge: test workflows at scales required for HL-LHC
◦ “ttbar” analysis, input dataset derived from 2015 Open Data of the CMS experiment
◦ Conversion to RNTuple: 969 GB across 787 files, divided into nine partitions

• Evaluation benchmark: reduce size of the dataset by skimming
◦ Retain only fields used by analysis, filter events (entries) based on coarse cuts
◦ Output: nine files, total size of 19 GB

10 / 12

https://agc.readthedocs.io/

Dataset Skimming of the Analysis Grand Challenge

1 2 4 8 16 32 64 128

1

2

4

8

16

32

threads

sp
ee
d
u
p

application scaling limit

seq. writing (with IMT1)
separate files
files merged after writing

TBufferMerger2

parallel writing

Figure 6: Speedup of the AGC dataset skimming benchmark compared to a full sequential run.

1ROOT’s implicit multithreading (IMT) used to parallelize compression of pages.
2TBufferMerger merges files in memory. It is the current way of parallel writing in ROOT.

11 / 12

Conclusions and Future Work

Conclusions and Future Work

• Presented concept for parallel writing of nested data in columnar formats
• Implemented for RNTuple: https://github.com/root-project/root/

• Evaluation with synthetic benchmark and application of dataset skimming

• Synthetic benchmark scales up to storage bandwidth limit
◦ Plan to investigate usage of Direct I/O

→ Presentation at CHEP 2024 in October

• Extend parallel writing to process-level parallelism
• Distributed parallelism with MPI and writing to cluster filesystems

12 / 12

https://github.com/root-project/root/
https://indico.cern.ch/event/1338689/contributions/6010002/

Conclusions and Future Work

• Presented concept for parallel writing of nested data in columnar formats
• Implemented for RNTuple: https://github.com/root-project/root/

• Evaluation with synthetic benchmark and application of dataset skimming

• Synthetic benchmark scales up to storage bandwidth limit
◦ Plan to investigate usage of Direct I/O

→ Presentation at CHEP 2024 in October

• Extend parallel writing to process-level parallelism
• Distributed parallelism with MPI and writing to cluster filesystems

12 / 12

https://github.com/root-project/root/
https://indico.cern.ch/event/1338689/contributions/6010002/

Conclusions and Future Work

• Presented concept for parallel writing of nested data in columnar formats
• Implemented for RNTuple: https://github.com/root-project/root/

• Evaluation with synthetic benchmark and application of dataset skimming

• Synthetic benchmark scales up to storage bandwidth limit
◦ Plan to investigate usage of Direct I/O

→ Presentation at CHEP 2024 in October

• Extend parallel writing to process-level parallelism
• Distributed parallelism with MPI and writing to cluster filesystems

12 / 12

https://github.com/root-project/root/
https://indico.cern.ch/event/1338689/contributions/6010002/

Backup Slides

0 / 5

LHC Long Term Schedule

1 / 5

Writing to /dev/null

1 2 4 8 16 32 64 128

25

50

100

200

400

800

1,600

3,200

6,400

12,800

threads

b
an

d
w
id
th

[M
B
/s
]

buffered
unbuffered
uncompressed

buffered (separate)

uncompressed (separate)

2 / 5

Writing to SSD (original plot from the paper)

1 2 4 8 16 32 64 128

25

50

100

200

400

800

threads

b
an

d
w
id
th

[M
B
/s
]

bandwidth limit
buffered
unbuffered
uncompressed

bandwidth limit (fallocate)

buffered (fallocate)

uncompressed (fallocate)

3 / 5

Writing to HDD

1 2 4 8 16 32 64 128

20

40

80

160

threads

b
an

d
w
id
th

[M
B
/s
]

bandwidth limit
buffered
unbuffered
uncompressed

4 / 5

Direct I/O – Writing to SSD, no compression – preliminary

1 2 4 8 16 32 64 128

25

50

100

200

400

800

1,600

3,200

threads

st
or
ag

e
b
an

d
w
id
th

[M
B
/s
]

bandwidth limit
buffered writing

bandwidth limit (fallocate)
with fallocate

bandwidth limit (Direct I/O)

Direct I/O
512B alignment

5 / 5

	RNTuple Overview
	Concepts for Parallel Writing of Columnar Data
	Evaluation of Parallel RNTuple Writing
	Conclusions and Future Work
	Appendix

