
Full and fast simulations of the CLD detector concept and its future improvement

September 23, 2024

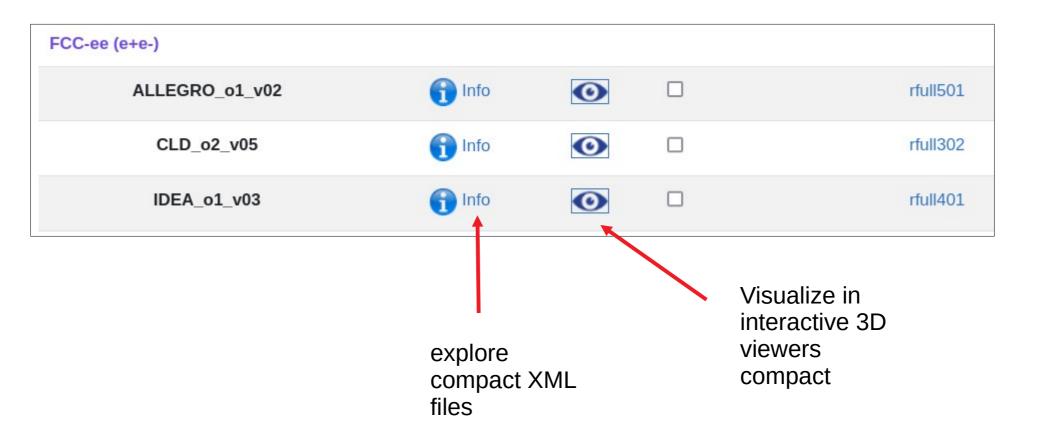
S.Chekanov, A.Paramonov, J.Zhang

ANL, USA

Introduction

About the group

Long standing expertise on collider experiments like ZEUS, CDF and ATLAS, experience and facility for silicon detector, calorimetry, electronics, TDAQ, software and computing.

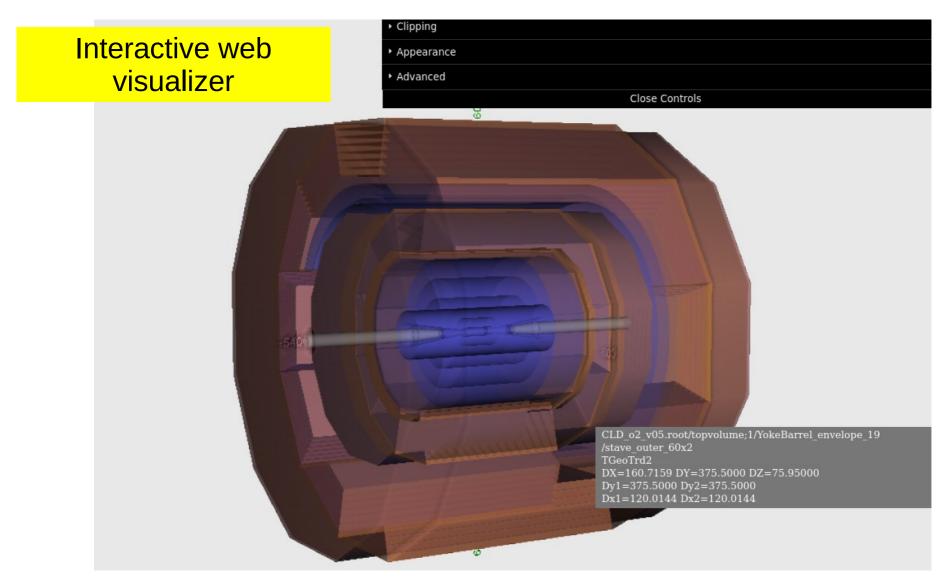

Contributions to TESLA, ILC, CLIC and FCC-hh conceptual designs, work on MC simulations, physics, tracking, calorimetry and TDAQ

Motivation

- Verify performance of the CLD_o2_v05 detector using Geant4 sim/rec
- Focus on tracking resolution, detector response at Z peak
- Verify the recent simulation/reconstruction using key4hep
- Compare with initial Delphes simulation (v3.5 using IDEA cards)
 - Calculate the Z-boson line shape & tracking resolutions
- Tune Delphes simulations and develop CLD-Delphes card
- Future: Help producing a TPC version of tracking

CLD_o2_v05 integration with HepSim

CLD, Alegro, IDEA were integrated in HepSim together with detectors from ILC, CLIC etc. https://atlaswww.hep.anl.gov/hepsim/detectors.php


CLD_o2_v05 integration with HepSim

https://atlaswww.hep.anl.gov/hepsim/detectorinfo.php?id=CLD_o2_v05

Summar	У	Y 751 CLD_02_V05
Name:	CLD_02_v05	
Title:	FCCee detector model option 2 version 05 (updated Beampipe and VXD)	
Author:	Andre Sailer	
Status:	development	Z 500
Version:	5	
Level:	Geant4 simulation and full event reconstruction	
Summary:	view	
3D View:		-751
GeoManager:		
Last modified:	July 01, 2024	
Reconst	ruction tags	Use for visual inspection in 3D
🝆 Tag lists:	rfull302	

CLD_o2_v05 integration with HepSim

https://atlaswww.hep.anl.gov/hepsim/viewdet.php?det=CLD_o2_v05

Creating Monte Carlo event samples

- Created truth-level samples at 91 GeV using Pythia8:
 - \blacksquare Z \rightarrow all; Z \rightarrow e+e-; Z \rightarrow mu+ mu- (~1 M events)
- Create EDM Geant4 simulations using Key4hep of a fraction of truth events:
 - Uses /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh -r 2024-08-01
 - Geometry: CLD_o2_v05
- Create EDM Delphes fast simulation using the card for the IDEA detector (initial dummy for further modifications for CLD)
- Truth level, full simulations and fast simulations are registered in HepSim and available for downloads:

		Generator		EVGEN	Fast	Full	
	Dataset Name		Description		simulation	simulation	
1	gev91ee_pythia8	PYTHIA8 Info	Info		rfast302 (info)	rfull302	
						(info)	https://atlaswww.hep.anl.gov/hepsir
2	gev91ee_pythia8_ee	PYTHIA8	Info	URL	rfast302	rfull302	
					(info)	(info)	
3	gev91ee_pythia8_mm	PYTHIA8	Info	URL	rfast302	rfull302	

Files with Geant4 and Delphes simulations

https://atlaswww.hep.anl.gov/hepsim/info.php?item=381

Dataset: gev91ee_pythia8_mm%rfull302

https://mc.hep.anl.gov/asc/hepsim/events/ee/91gev/pythia8_91gev_mm/rfull302 Download: hs-get gev91ee_pythia8_mm%rfull302

		File name	Size
1	Ē	gev91ee_zboson_mm_001_CLD_RECO_edm4hep.root	50.27 MB
2	Ē	gev91ee_zboson_mm_002_CLD_RECO_edm4hep.root	51.8 MB
3	Ē	gev91ee_zboson_mm_003_CLD_RECO_edm4hep.root	51.52 MB
4	Ē	gev91ee_zboson_mm_004_CLD_RECO_edm4hep.root	51.93 MB
5	Ē	gev91ee_zboson_mm_005_CLD_RECO_edm4hep.root	52.14 MB
6	Ē	gev91ee_zboson_mm_006_CLD_RECO_edm4hep.root	50.99 MB
7	Ē	gev91ee_zboson_mm_007_CLD_RECO_edm4hep.root	49.16 MB
8	Ē	gev91ee_zboson_mm_008_CLD_RECO_edm4hep.root	50.48 MB
9	Ē	gev91ee_zboson_mm_009_CLD_RECO_edm4hep.root	51.17 MB
10	Ē	gev91ee_zboson_mm_010_CLD_RECO_edm4hep.root	53.73 MB
11	Ē	gev91ee_zboson_mm_011_CLD_RECO_edm4hep.root	47.98 MB
12	Ē	gev91ee_zboson_mm_012_CLD_RECO_edm4hep.root	53.7 MB
13	Ē	gev91ee_zboson_mm_013_CLD_RECO_edm4hep.root	51.49 MB
14	Ē	gev91ee_zboson_mm_014_CLD_RECO_edm4hep.root	52.65 MB
15	Ē	gev91ee zboson mm 015 CLD RECO edm4hep.root	48.23 MB

Dataset: gev91ee_pythia8_mm%rfast302

https://mc.hep.anl.gov/asc/hepsim/events/ee/91gev/pythia8_91gev_mm/rfast302

Download: hs-get gev91ee_pythia8_mm%rfast302

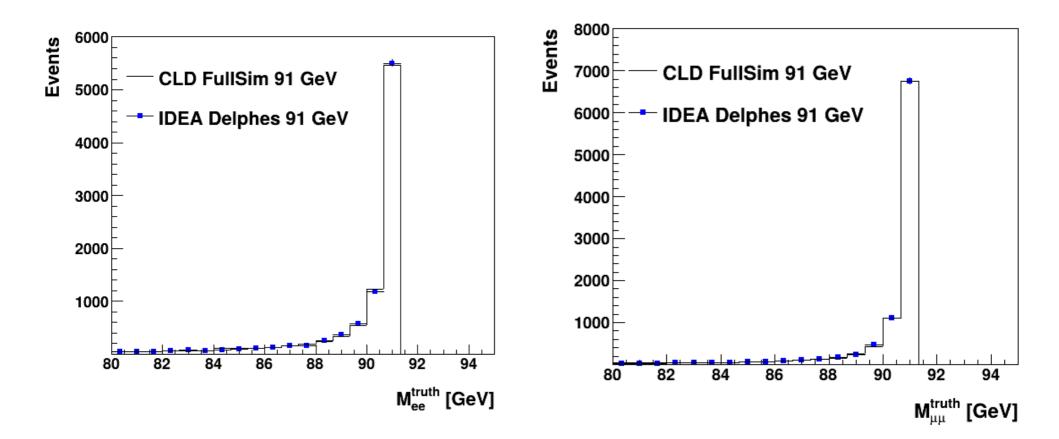
		File name	Size
1	Ê	gev91ee_zboson_mm_001_delphesCLD_EDM.root	73.78 MB
2	Ê	gev91ee_zboson_mm_002_delphesCLD_EDM.root	73.65 MB
3	Ê	gev91ee_zboson_mm_003_delphesCLD_EDM.root	73.66 MB
4	Ê	gev91ee_zboson_mm_004_delphesCLD_EDM.root	73.69 MB
5	Ē	gev91ee_zboson_mm_005_delphesCLD_EDM.root	73.72 MB
6	Ē	gev91ee_zboson_mm_006_delphesCLD_EDM.root	73.65 MB
7	Ê	gev91ee_zboson_mm_007_delphesCLD_EDM.root	73.62 MB
8	Ê	gev91ee_zboson_mm_008_delphesCLD_EDM.root	73.52 MB
9	Ê	gev91ee_zboson_mm_009_delphesCLD_EDM.root	73.64 MB
10	Ē	gev91ee_zboson_mm_010_delphesCLD_EDM.root	73.75 MB
			0.719 GB

Some bugs in **k4SimDelphes** haves been reported (DelphesROOT_EDM4HEP) Does not start the loop! Fixed by Thomas Madlener

Basic studies: Full vs Fast simulations

C++ analysis code: https://github.com/chekanov/FCCPana Runs on full & fast simulations and creates invariant masses. Selections: pT>0.1 GeV, |y|<2.5

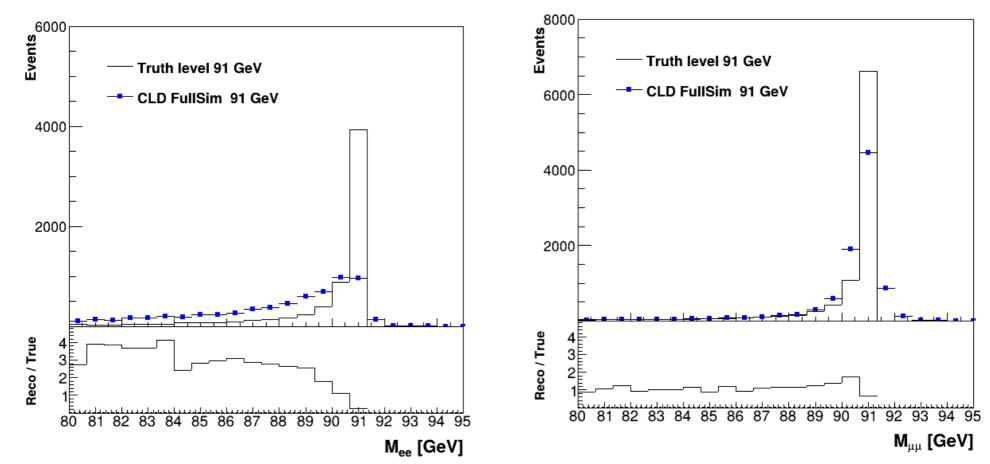
Full (Geant4) simulation:


- Use "PandoraPFOs_" from EDM and find identified electrons & muons
- Analyzer's high-end variable (more complex than just tracks), but more relevant for final physics analysis. "Tracks" are not available in final EDM (?)
- pass Tight selection
- Require charge (tracking information)
- Require opposite charge for invariant masses

Fast (Delphes) simulations:

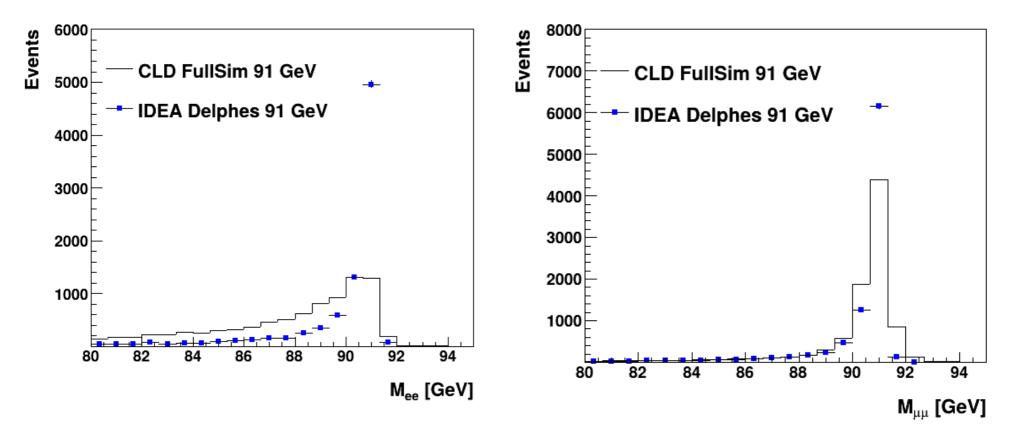
- Use "*ReconstructedParticles_*" from EDM and find identified electrons & muons
- Require charge (tracking information)
- Require opposite charge for invariant masses

Z line shape studies: Truth-level particles


C++ analysis code: https://github.com/chekanov/FCCPana Runs on full & fast simulations and creates invariant masses

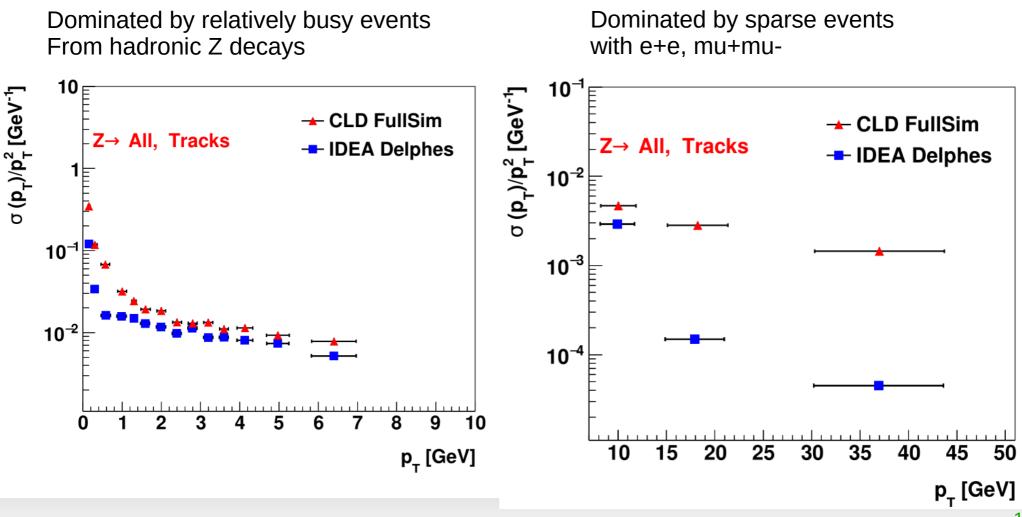
Truth-level information agrees for fast and full simulation in the EDM files. As it should.

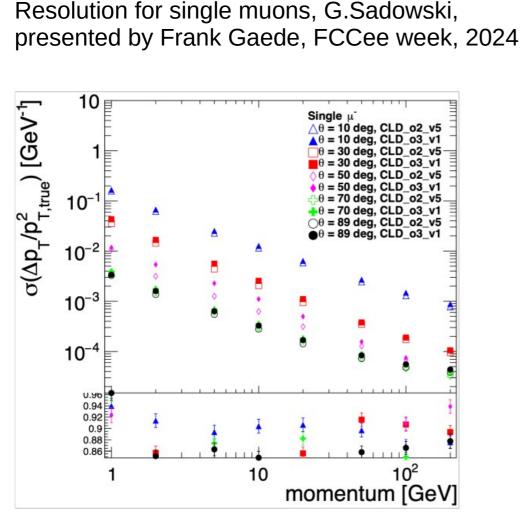
Basic studies: Full vs Truth


C++ analysis code: https://github.com/chekanov/FCCPana Runs on full & fast simulations and creates invariant masses

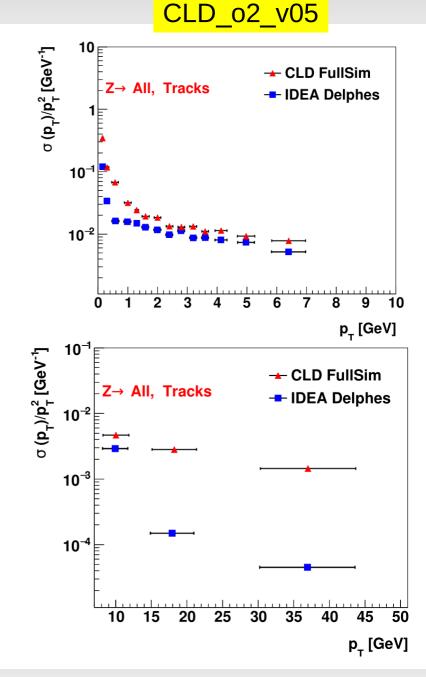
- Performance is worse for electrons
- Expected, assuming muon reconstruction is dominated by muon detection layers.

Basic studies: Full vs Fast simulations

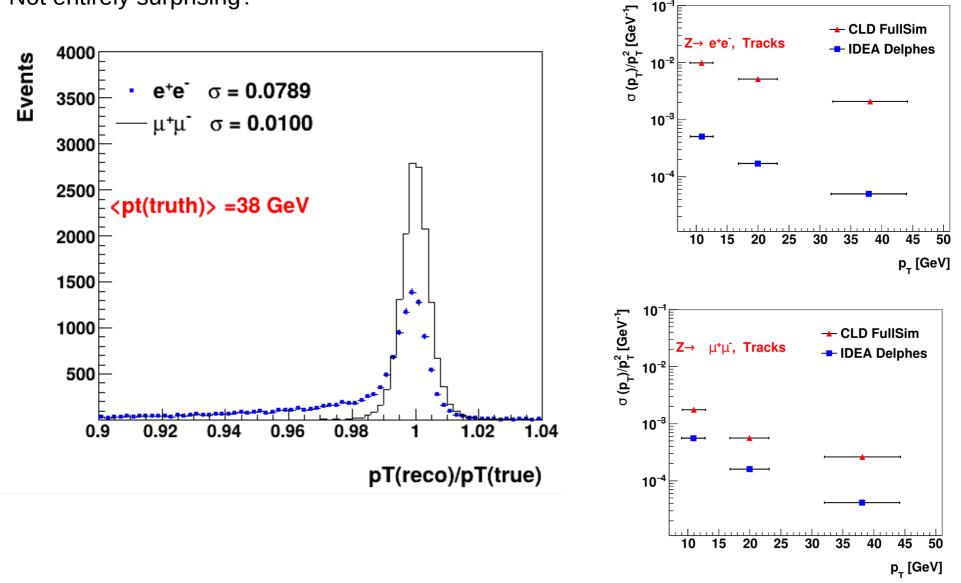

C++ analysis code: https://github.com/chekanov/FCCPana Runs on full & fast simulations and creates invariant masses


Delphes is unrealistically different from full simulations

Resolution using $Z \rightarrow all$

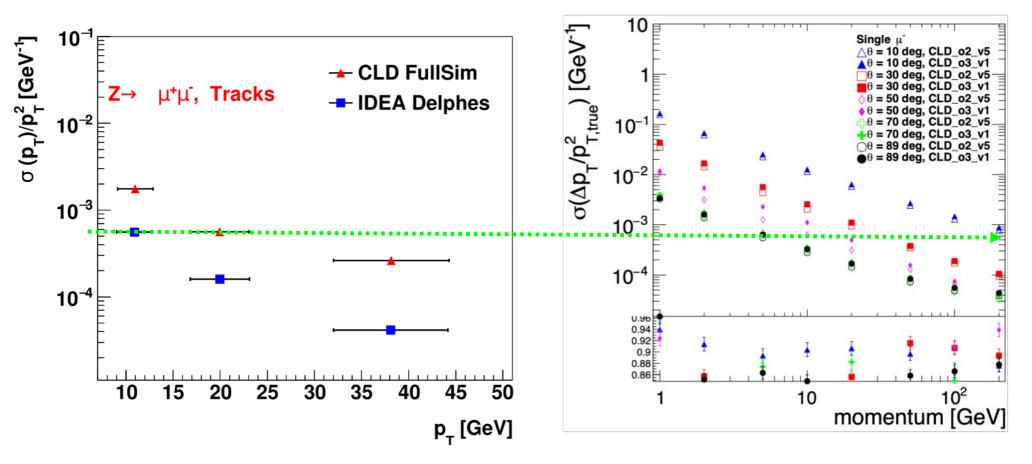

- Use a cone in ϕ -y with the size 0.05 to match a true particle with a track
- Use RMS for pT(reco)/pT(true)

Comparisons with previous studies

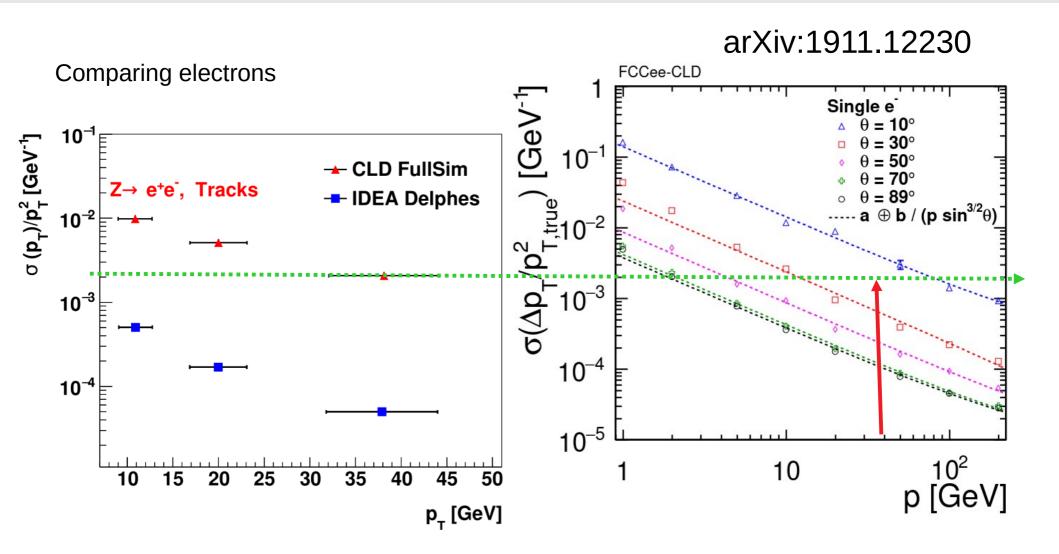


The agreement is reasonable with $Z \rightarrow all$, but Z boson decays cover different angles & different charged particles

Resolution using $Z \rightarrow e+e-$, mu+mu-


The resolution for muons is better than for electrons. Not entirely surprising?

Tracking resolution using $Z \rightarrow mu+mu-$


Comparing muons from Z vs single muons from tracks

Resolution for single muons, G.Sadowski, presented by Frank Gaede, FCCee week, 2024

~40 GeV: sigma/pT^2 ~ 0.00026 [GeV-1]. Roughly agrees with single-particle studies

Tracking resolution using $Z \rightarrow e+e-$

Probably is somewhat larger than seen for single leptons

Summary

- Verified CLD_o2_v05 detector performance with the focus on physics-related information from "PandoraPFOs_" for the Z peak
- It is still difficult to compare with single particle studies, but the results look compatible with single muons (tracks)
- DELPHES fast simulation does not look very realistic
- Future:
 - Work on a Delphes version of the CLD detector
 - Contribute to the TPC version of tracking