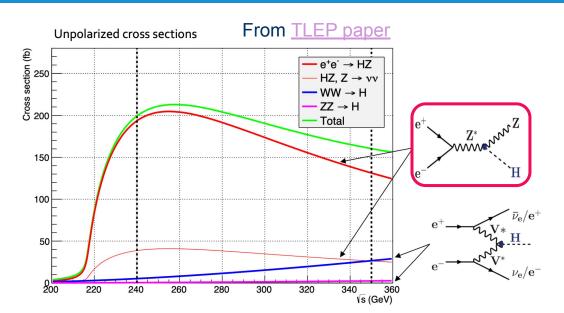
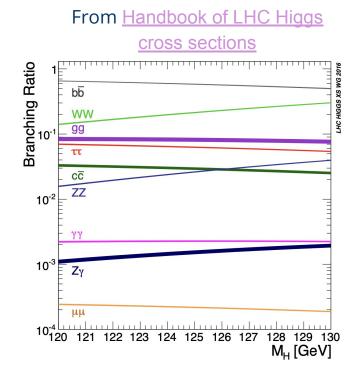


Iza Veliscek

Contributions from: Haider Abidi, Viviana Cavaliere, Jan Eysermans, George Iakovidis, Loukas Gouskos, Andrea Sciandra, Michele Selvaggi


23rd September 2024



Introduction

- ZH leading Higgs production mode
 - + All hadronic decay has the largest branching fraction
 - Jet combinatorics, flavour identification
- Abundance of Higgs produced @ √s = 240 GeV
 - Focus on IDEA Detector

Samples Considered

IDEA Detector

- Delphes fast sim
- Winter2023 Samples
 - /eos/experiment/fcc/ee/jet_flavour_taggi ng/winter2023/ wc_pt_7classes_12_04_2023
- Jet Clustering
 - N = 4 Durham k_{τ} exclusive algorithm
- ParticleNet jet tagger
 - fccee_flavtagging_edm4hep_wc
- Build on ZH(full hadronic) analysis
 presented in Annecy by George [slides]

Background:

- WW
- Zqq
- Z(bb/cc/ss/qq/)H(tautau)
- Z(bb/cc/ss/qq/)H(WW)
- Z(bb/cc/ss/qq/)H(ZZ)
- Z(bb/cc/ss/qq/)H(Z/χ*)
- nunuH(jj)
- Missing Z(bb/cc/ss/qq/)H(qq)

Signals:

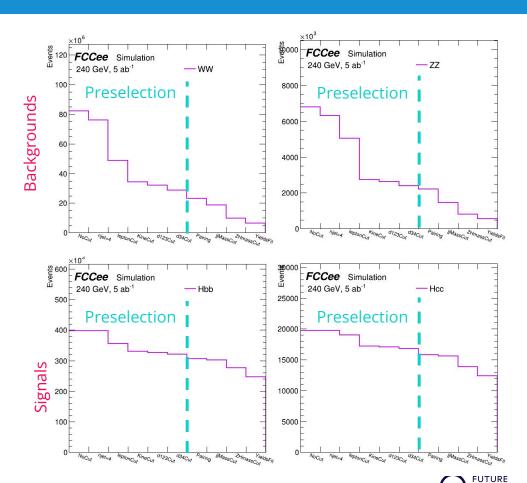
- Z(bb/cc/ss/qq/)H(bb)
- Z(bb/cc/ss/qq/)H(cc)
- Z(bb/cc/ss/qq/)H(ss)
- Z(bb/cc/ss/qq/)H(gg)

Analysis setup

Preselection

Exactly 4 jet!

Lepton cuts


- <= 2 muons and electrons
- Leading muon and electron pT < 20
 GeV

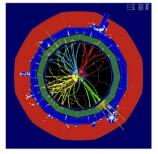
Visible Energy

- Visible m > 150 GeV
- Visible E > 150 GeV
- 0.15 < Visible θ < 3.0

$\mathbf{d}_{\mathbf{i}\mathbf{j}} \, \underline{\mathbf{Cuts}}$

- 15000 < d₁₂ < 58000
- 400 < d₂₃ < 18000
- $100 < d_{34} < 6000$

Jet energy correction


Precision with e⁺e⁻ colliders (4)

- Why are e⁺e⁻ colliders the tool of choice for precision anyway? (cont'd)
 - · Electrons are leptons, i.e., elementary particles: no underlying event
 - Corollary: Final state has known energy and momentum: (\sqrt{s}, o, o, o)
 - Example: an e⁺e[−] → W⁺W[−] → qqqq candidate
 - Four jets in the event and nothing else
 - Total energy and momentum are conserved

⇒
$$E_1 + E_2 + E_3 + E_4 = \sqrt{s}$$

⇒ $P_1^{x,y,z} + p_2^{x,y,z} + p_3^{x,y,z} + p_4^{x,y,z} = 0$

• Jet directions ($\beta_i = p_i/E_i$) are very well measured

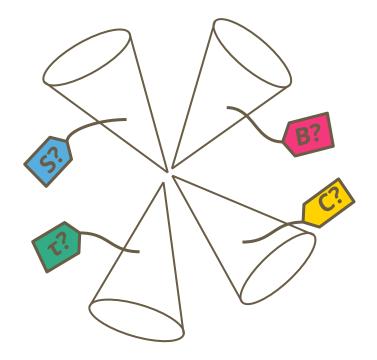
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ \beta_1^x & \beta_2^x & \beta_3^x & \beta_4^x \\ \beta_1^y & \beta_2^y & \beta_3^y & \beta_4^y \\ \beta_1^z & \beta_2^z & \beta_3^z & \beta_4^z \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix} = \begin{bmatrix} \sqrt{s} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- Jet energies (or di-jet masses: mw) determined analytically by inverting the matrix
 - No systematic uncertainty related to jet energy calibration

A lot of Z are available anyway to calibrate and align everything

Patrick Janot

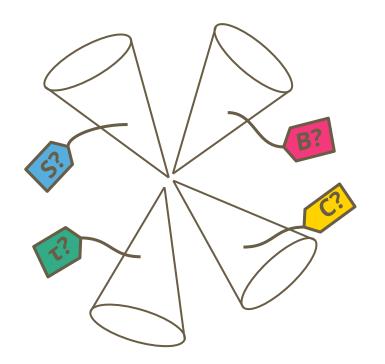
Physics at Future Colliders 28-29 July 2016


7

If any jet in event E<0 OR E>240
 GeV [only a few percent of events]

TOSS EVENT

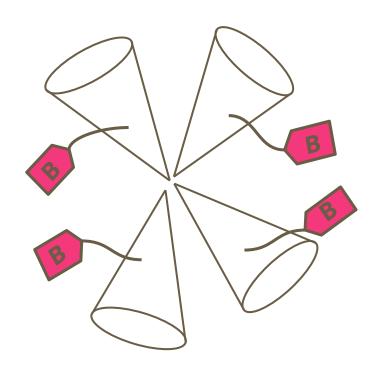
Jet "tagging"



ParticleNet jet tagger

Scores provided for the "flavours":

- Scores ~ probability jet is of flavour
 X
- NOT traditional flavour tagging
 - Maximum flavour score ~
 flavor of jet
 - Sums of same flavour scores for jet pairs ~ flavour of jet pair



Each jet has a maximum tagger score from a different flavour

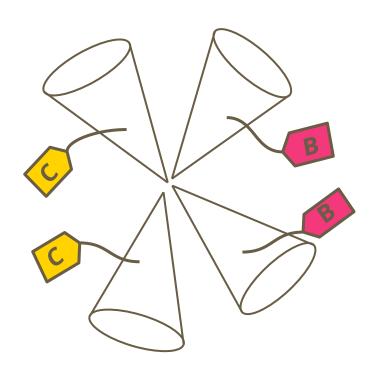
TOSS EVENT

CASE 1: All jets have the maximum score from the same flavour

Finding the H&Z candidates

Consider all possible jet pairs

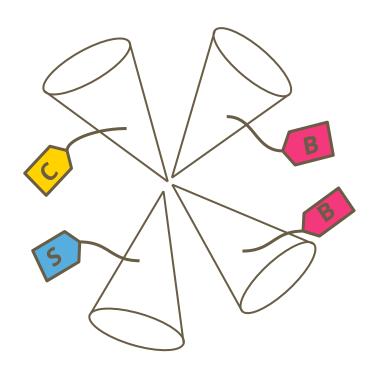
•
$$\chi_{H} = (m_{ij} - m_{H,true})^2$$


•
$$\chi_Z = (m_{lk} - m_{Z, true})^2$$

•
$$\chi_{comb} = \chi_H + \chi_Z$$

The jet paring that gives the **minimum**

χ_{comb} is chosen!

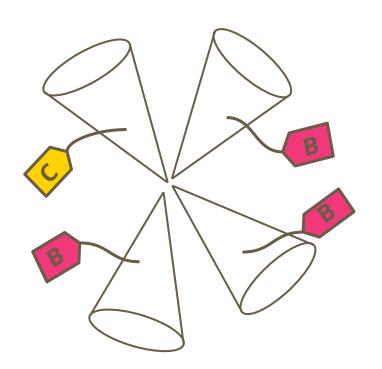


CASE 2: Two jet pairs with same maximum score from the same flavour, but different flavour of the pairs

Finding the H&Z candidates

- Jet paired, if they have the same flavour maximum score
- Z candidate: Pair with minimum $\chi_Z = (m_{lk} m_{Z, true})^2$

CASE 3: Two jets with maximum score from the same flavour form a pair


Recover second pair:

- Consider all sums of tagger scores
 - $\circ \quad \mathbf{Max}(\sum_{ij} \mathbf{B} \mathbf{score}, \sum_{ij} \mathbf{C} \mathbf{score}, \sum_{ij} \mathbf{S} \mathbf{score}, \ldots)$
 - Determines the flavour of the pair

Finding the H&Z candidates

- Same flavour pairs (Case 1)
 - $\blacksquare \quad \mathsf{Min}(\chi_{\mathsf{comb}} = \chi_{\mathsf{H}} + \chi_{\mathsf{Z}})$
- Different flavour pairs (Case 2)
 - $\blacksquare \quad \text{Min}(\chi_Z = (m_{lk} m_{Z, \text{ true}})^2$

CASE 4: Three jets with maximum score from the same flavour

Recover first pair: [check code]

- Maximum tagger score sum
 - \triangleright **Max**(\sum_{ii} Bscore, \sum_{ik} Bscore, \sum_{ik} Bscore, ...)
 - Determines the flavour of the 1st pair

Recover second pair:

- Consider all sums of tagger scores
 - \circ Max(\sum_{ij} Bscore, \sum_{ij} Cscore, \sum_{ij} Sscore, ...)
 - Determines the flavour of the pair

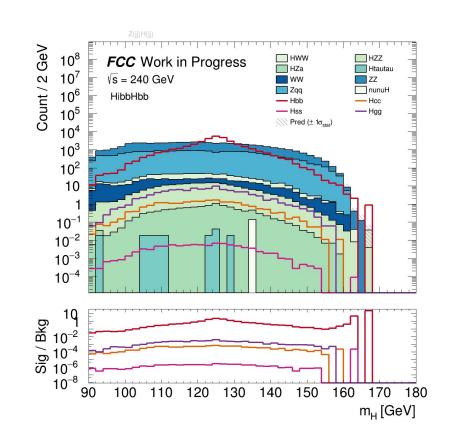
Finding the H&Z candidates

Same as for Case 3

A few more cuts

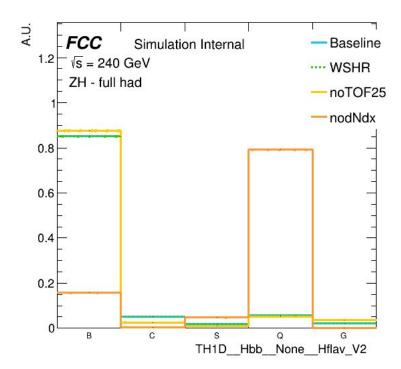
WW & ZZ rejection

$$\sqrt{(m_{z_{jj}} - m_W)^2 + (m_{H_{jj}} - m_W)^2} > 10$$


$$\sqrt{(m_{z_{jj}}-m_Z)^2+(m_{H_{jj}}-m_Z)^2}>10$$

Mass window

$$50 < m_{Z_{ii}} < 125 \,\text{GeV}, m_{H_{ii}} > 90 \,\text{GeV}$$


Reject events identified/contain as:

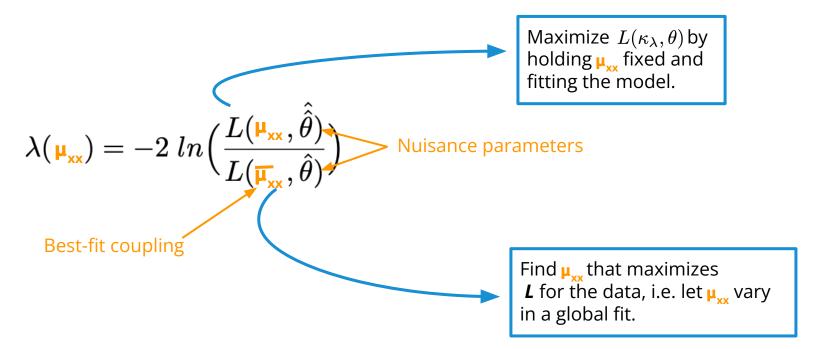
- H->TT
- H->qq, q=u,d
- Z->TT
- Z->gg

Categorization

Hbb signal categorized according to the **flavour tagged.** Additional split according to H flavour score in fit (purity)

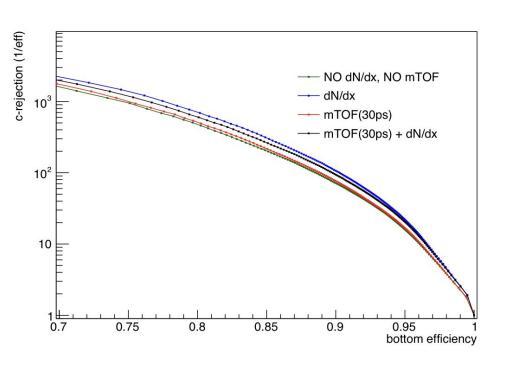
- Categorize by H->j₁j₂ decay
 - Categorize by Z->j₃j₄ decay
 - Additionally by H flavour score

Purity category :


- High (>1.8 (1.4 for Hss))
- Mid(1.1 (0.8) < score < 1.6(1.4) (Hss cut in ())
- Low (<1.1 (0.8 for Hss))
- 48 Categorised in total!
- + 1 GeV binning in m_{ii,H}
- + 5 GeV binning in $m_{jj,Z}$

Iza Veliscek

Likelihood scan


- Asimov (expected) data = SM = background estimation + SM signal
 - \circ How compatible are different μ_{vv} to the asimov data set, i.e. how sensitive are we?
 - Compare the **test statistic** (λ) of the different μ_{xx} on this dataset.

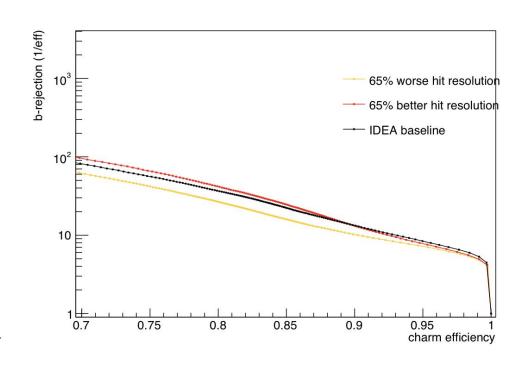
Removing information from the tagger

by Andrea Sciandra

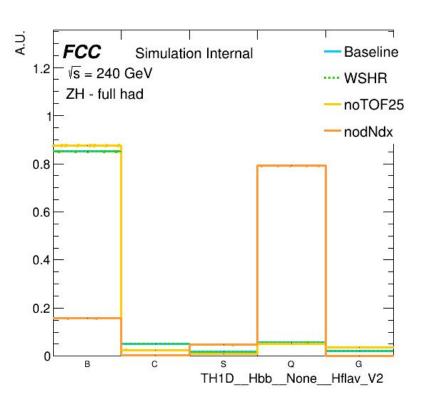
- No TOF Removing time of flight information
- No dN/dx -Removing number of clusters information

*Note overall the tagger performance is a bit worse compared to the official FCC ParticleNet as it is trained on a smaller set of jets

Changing geometry of the tracker


by Andrea Sciandra

Realistic variations considered

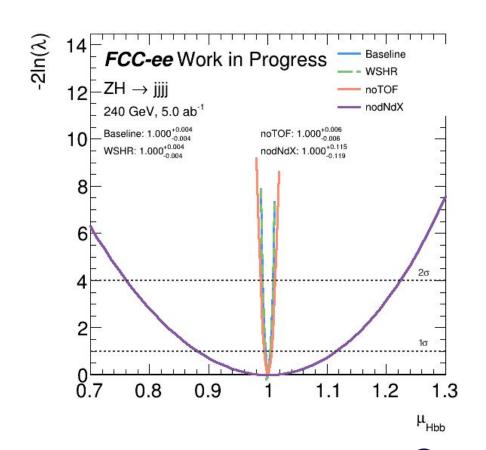

- 65% Worse single hit resolution
- 50% Heavier VXD
- No intermediate layer

Overall observations

- Note differences notable only at lower efficiencies
- Baseline IDEA pretty close to a "perfect" detector
 - Will focus variation that make the tracker worse only

Robustness of flavour tagging strategy

- Realistic changes of tracker
 - Summing the flavour scores guarantees the robustness of flavour tagging
 - Very little migration between the flavour categories
 - Only showing 65% Worse single hit resolution (WSHR on the plot) for clarity
- nodNdx biggest impact on mis-tagging
 - As expected from ROC curves
- *Assumption only changed the tagger training not the simulated samples


Impact on the ZH fully hadronic analysis

Tracker variations considered

 No notable change in the limits from 65% Worse single hit resolution, 50% Heavier VXD, no intermediate layer

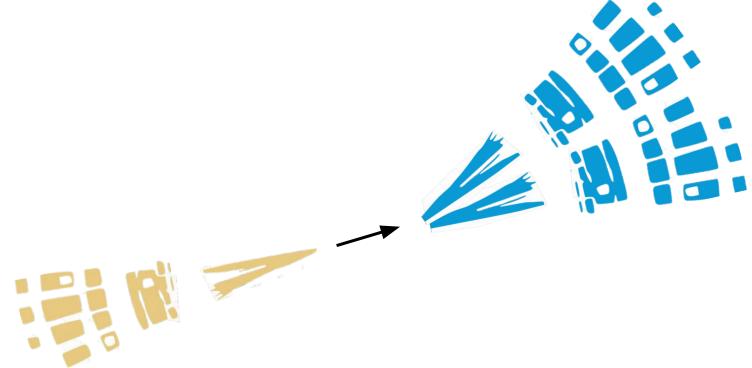
Removing PID information

- Huge impact from removing dNdX information
 - From 0.4% precision on Hbb coupling strength to 12 % precision
 - Hcc, Hgg struggle to converge as very little signal tagged
 - Removing TOF has a few percent impact on the coupling measurements

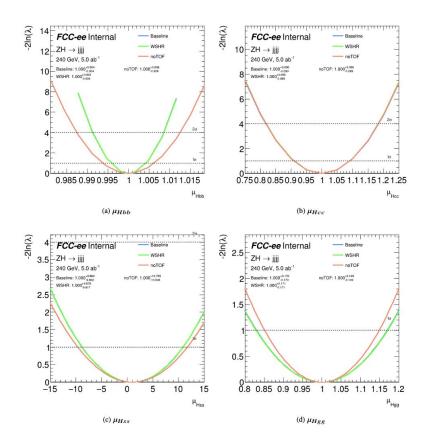
Iza Veliscek 18

Conclusions

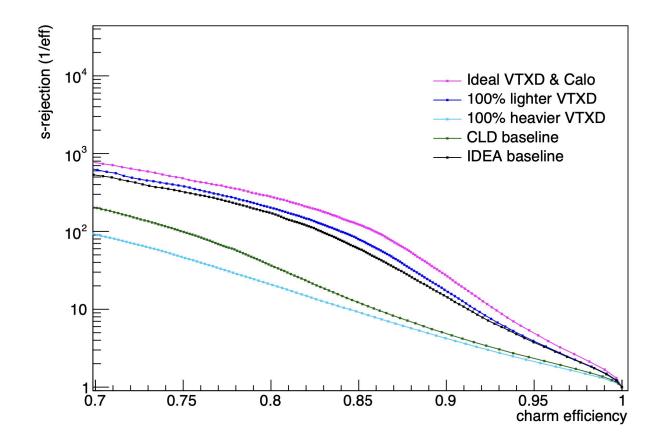
- Changing the tracker does not impact the fully hadronic ZH analysis significantly
 - Might be underestimated as flavour tagging strategy might be too robust
 - Only change the flavour tagging training not IDEA simulation
- However, time of flight and cluster information are crucial and have a significant impact on the sensitivity of the measurements
 - Without the number of cluster information x100 worse precision!



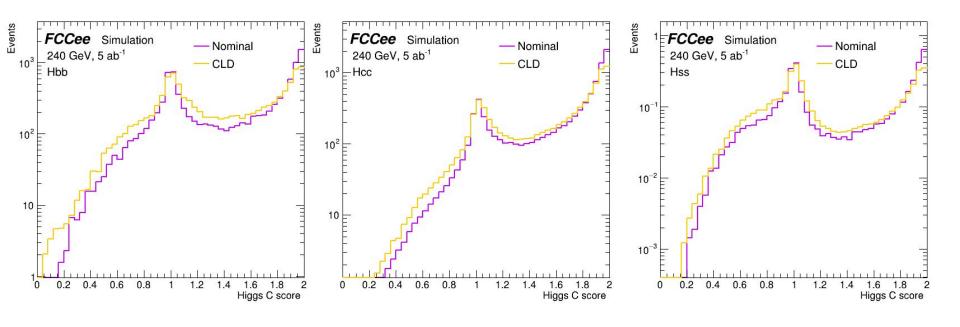
Next Steps


- Checking the impact on the ZvvHjj analysis [To be wrapped up this week!]
 - Most sensitive channel
 - Higgs/top group simulated each changes in the tracker configuration
 - \circ Additionally considering change of the beam pipe to tracker distance (500 μm) [check]
- Rerun the analysis with the 7 flavour tagger
 - Score for taus, u- and d- quarks added

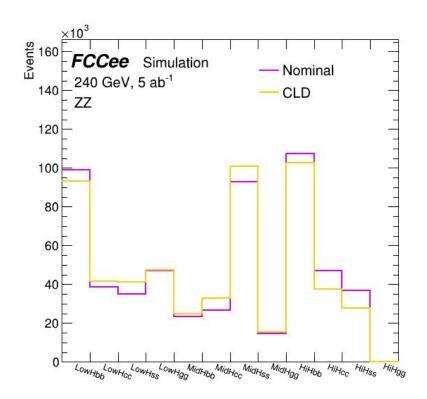
BACKUP

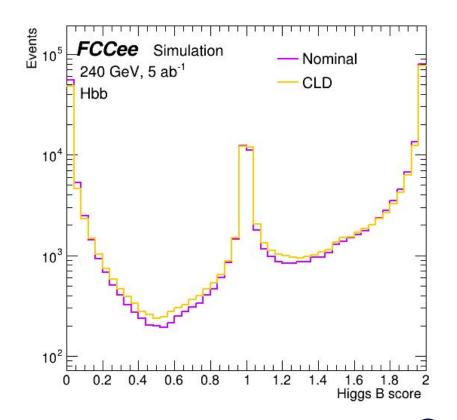


Impact on the analysis

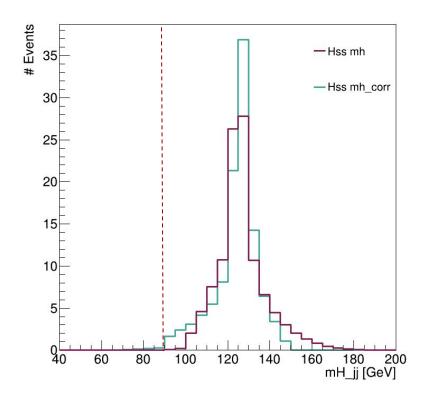


Tagger performance


Impact on the analysis - Higgs C score



Truth H->cc jets flavour: The better rejection of the Nominal tagger is reflected in a higher fraction of truth H->cc events, with a very high Higgs C score. [see next slide]

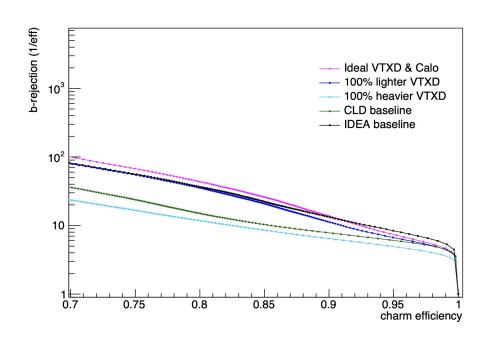

Migration of ZZ events

Yet another correction to m_{ij,H}

- Besides the energy correction to the jets based on COM
- After all selection:

As before fit mH_jj_corr against mZ_jj

Variation	μ_{Hbb}	μ _{Hcc}
BASE	±0.3	±3.9
Base (fit Mh_jj_corr_Mz_jj	±0.3	±3.9

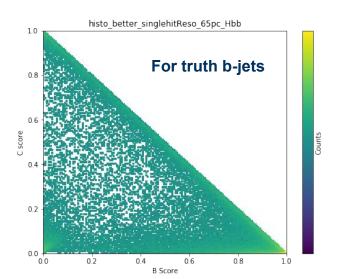


IDEA tracker variations: Approximating the impact of tagging performance on the analysis

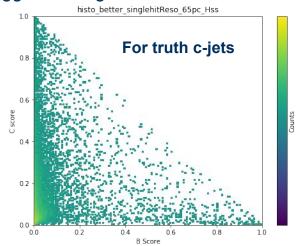
<u>Andrean re-trained tagger for different detectors</u> [see Andrea' presentation]:

- Baseline: IDEA baseline
- idealVXDCalo:
 - Best material budget, hit resolution and calorimeter granularity
- lighterVXD_100pc:
 - ~ No material interaction(X₀>>1m)
- heavierVXD_100pc:
 - Super small radiation length (X₀<<1m)
- CLD

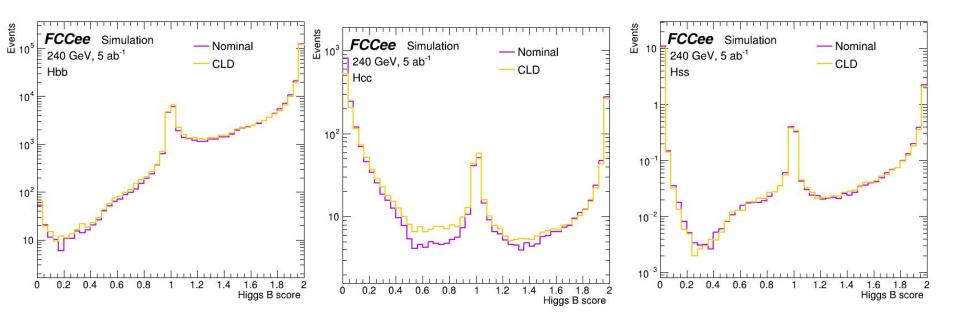
Plot from Andrea



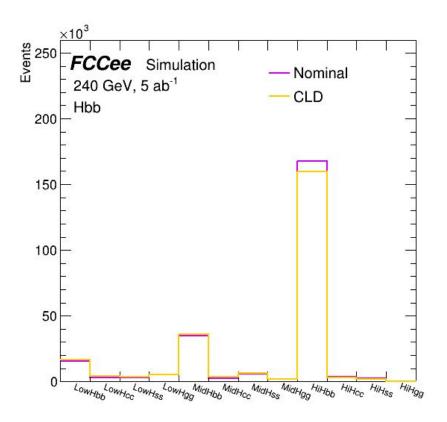
Approximating the impact on tagging

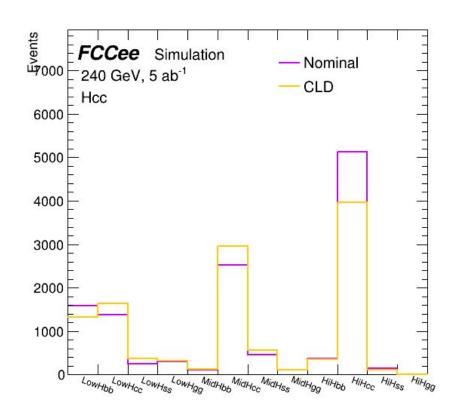

Propagating the impact of retraining the tagger:

- Account only for impact on b-,c- and s-score
- Histo per jet flavour (4x) per detector variation
 [Thanks Andrea!]
 - Sample from histogram to update the b- c- and s-score score
 - Depends on the jet truth label!

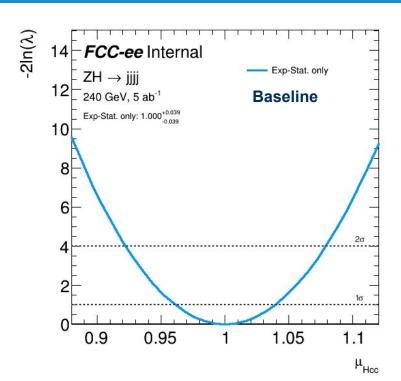

Drawbacks of the strategy

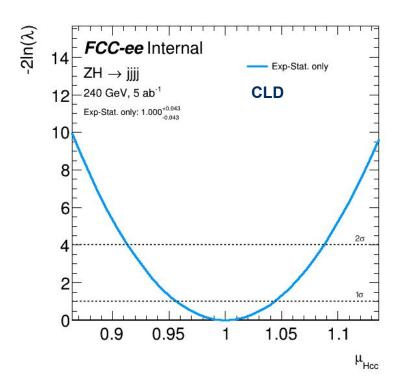
- <u>Jet truth labelling</u> not optimal
 - 88% accuracy in Z(qq)H(bb) samples [Thanks
 Jan E.!]
 - Does not tag gluon jets
- Ignoring some correlations
 - Correlation of the b-,c-, s- score to u/d, gluon score neglected
- * Older tagger training, tau's not included


Impact on the analysis - Higgs B score



Truth H->bb jets flavour: The hit in performance of the tagger has the largest effect on the Higgs C-score. Smaller c-jet rejection leads to a larger Higgs C score.


Impact on the analysis - Migration between fit categories



Likelihood scans - μ_{Hcc}

Largest change in expected precision on μ_{Hcc} observed when the tagger is re-trained with the CLD simulation.

Results

- IDEA baseline very close to ideal vertex
 & calo detector
- Robust analysis strategy
 - Small change in event selection
 - Main effect is migrates events between categories, dues to changes in performance
- No change in μ_{Hαα} as expected
 - G-score not varied nor truth gluon jet score corrected
- Largest impact on μ_{Hcc} w/ CLD trained tagger
- Caveats remainder!
 - Only approximate propagation of tagging effects
 - Ignored correlations of between b/c/s with g and light scores

32

Variation 68% CL precision	μ _{Hbb}	μ _{Hcc}
BASE	±0.3%	±3.9%
idealVXDCalo	±0.3%	+3.9% -3.8%
lighterVXD_100pc	±0.3%	±3.9%
heavierVXD_100pc	±0.4%	+4.6% -4.5%
CLD	±0.4%	±4.3%

Conclusion

- Correction of the reconstructed Higgs mass does not significantly improve the expected precision on μ_{Hxx}
 - mH_jj_corr = mH_jj + mZ_jj mZ_{truth}
- First look at the impact of flavour tagging given different detector layouts
 - Partricle net retrained for various detector layouts
 - Changes in tagger performance propagated to the ZH->jjjj analysis
 - Sever approximation taken to have a quick estimation of the impact
 - Determine how big of a change in the tagging performance is worth rerunning the whole analysis chain
 - The analysis roubouts
 - Very small impact on the expected μ_{Hxx} precision measurement

