Carbon Stars as Standard Candles An Independent Measurement of the Hubble Constant with JWST

EuCAPT H_o Workshop September 12, 2024

Abigail Lee NASA FINESST Fellow University of Chicago

Tension in H₀

Measurement from early universe Cosmic Microwave Background

Planck collaboration 2020 $67.4 \pm 0.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$ assuming ACDM

Measurement from local universe Supernovae Ia distance ladder

SHOES (Riess et al. 2022) $73.0 \pm 1.0 \text{ km s}^{-1} \text{ Mpc}^{-1}$

2019 Disagreement between Cepheids vs. TRGB

SNe la host calibrating galaxies

Freedman+ 2019

10 000 5000 Temperature T_{κ}

Astrophysical Distance Methods: Carbon Stars as Standard Candles

Extended convective envelope

*Not to scale

Heliumburning shell

- "Dredge-up" episodes responsible for creating carbon stars only effective for a narrow range of masses and thus, luminosities of AGB stars (see Habing & Olofsson 2004 for a review)
- $\approx 1.5-4$ Mo

Hydrogen-burning shell

The J-region Asymptotic Giant Branch (JAGB) Method

Lee+24c (submitted)

- ★ JAGB stars are intermediate-mass, carbon-rich AGB stars
- **★** JAGB stars are **photometrically** selected using near-infrared colors
- ★ The mode of the JAGB luminosity function is constant from galaxy to galaxy and therefore an effective standard candle (Freedman & Madore 2020, Lee+2021a, Zgirski+2021, Lee+2022, Madore+2022, Parada+2023, Lee+2024b)
- **★** Comparable accuracy and precision to the **TRGB and Cepheids**

Comparison of Brightnesses Between Distance Indicators

Cooler

Freedman & Madore 2023

The JAGB Method

Advantages:

- **★** JAGB stars are distinctive and easily identifiable on the basis of their color
- **★** JAGB stars are ubiquitous and can be found throughout all galaxy morphologies and inclinations
- **★** Near-infrared observations decreases line-of-sight extinction
- * Only require 1 epoch of observations for measurement

★ Crowding effects are decreased in the outer disk Potential sources of systematic errors:

* How does the shape and mode of the JAGB star luminosity function depend on the host galaxy's star formation history or metallicity?

Quantifying Accuracy/Precision of JAGB Method

•104 nights of JHK observations acquired from the Baade-Magellan telescope

• Data are publicly available

doi: 10.5281/ zenodo.10989065

Lee+ 2024b

Quantifying Accuracy/Precision of JAGB Method

Lee+ 24b

The JAGB method agrees well with the TRGB and Cepheid P-L relation at the 3% level in nearby galaxies (d < 4 Mpc)

TRGB

- ★ Measured in stellar halo
- \star Older stellar population (>4 Gyr)
- ★ Helium Flash

forming disks

- ★ Younger stellar population (<100 Myr)
- ★ Mechanical pulsation cycles

Cepheids

JAGB

- \star Measured in the star-
- \star Measured in the outer disks
- **★** Intermediate-age stellar population (300 Myr-1 Gyr)
- **★** Third Dredge-up
- Potential sources of systematic errors for each distance indicator are independent, and can be unearthed through inter-comparison

The Chicago-Carnegie Hubble Program (CCHP) How can the JWST help us improve measurements of H₀?

Cepheid P-L relation

TRGB

JAGB Method

Wendy Freedman (PI)

Taylor Hoyt

Barry Madore

Abby Lee

In Sung Jang

Kayla Owens

CCHP JWST JAGB Program

- ★ JWST has ushered in a new era of accuracy in the local distance scale
 - \star JWST has 3x resolution than HST in the NIR
- ★ 7 SN Ia host galaxies
- ***** NIRCam fields target three distance indicators (JAGB, TRGB, Cepheids) simultaneously
- ***** Blind analysis: entire analysis carried out with random numbers applied to photometry

HST WFC₃/IR JWST NIRCam Cepheid in a SN Ia host galaxy at a distance of 20 Mpc

SN Ia host galaxy N1365

NGC 4639

Lee+ 24c (submitted)

 $\sigma_{\text{JAGB}} = 0.33 \text{ mag}$ d = 22 Mpc

$\sigma_{\text{JAGB}} = 0.33 \text{ mag}$ d = 50 kpc

Madore & Freedman 2020

LMC

Lee+ 24c (submitted)

stringent constraints on the Hubble tension

resulting from SN Ia selection (Riess+ 24)

variations (2%)

- JAGB H_o Error Budget
- $H_o = 67.96 \pm 1.85$ (stat) ± 1.90 (sys) km s⁻¹ Mpc⁻¹
- \star Promising method that with further development will provide more
- \star Our 3% statistical error encapsulates potential +3% difference in H_o
- \star Systematic error (3%) includes uncertainties from SN Ia host galaxy

Future Work: How do we get to a 1% JAGB H0?

understand JAGB LF shape variations

★ Statistical error: Currently have 7 SN Ia calibrating galaxies

★ 25 SNe Ia would give 1% statistical error

★ Need more JWST data!

- \star Currently JAGB H₀ has a 3% systematic and 3% statistical uncertainty
 - **★** Systematic error: Calibrating JAGB zero-point in 3 additional galaxies (LMC, SMC, MW) with larger range of metallicities to better

- ***** The JAGB method is a new standard candle based on carbon-rich AGB stars
- **★** The JAGB method agrees well with the Cepheid Leavitt law and the TRGB in nearby galaxies (d < 4 Mpc)
- \star JWST has ushered in a new era of accuracy in our measurement of H_o
- * JAGB method gives $H_0 = 67.96 \pm 1.85$ (stat) ± 1.90 (sys) km s⁻¹ Mpc⁻¹
- \star More JWST data will be required to measure JAGB H_o at 1% level

Summary