
Machine Learning @
An Overview



Acoustics is all around us

@               we do fundamental research in various sciences related to acoustics



Clusters at the Acoustics Research Institute

Biology Phonetics Hearing

Numerics Mathematics



The Wheel of Acoustics and a curious gap



Machine Learning @ ARI

- No dedicated machine learning workgroup

- Usually project-based and therefore fluctuating

- Different interests in different clusters 
(Use vs. Study and Development)



ARI's Machine Learning Team

Platform for inter-cluster exchange, 
discussion, and collaboration on research 

opportunities concerning machine learning 
and computational statistics



Some Projects 
(Recent and Ongoing)



Mesh2PPM: Estimation of Parametric Pinna Model 
Parameters from a Pinna-Mesh Representation

F. Pausch, F. Perfler, N. Holighaus, P. Majdak

The SONICOM project has received funding from the 
European Union’s Horizon 2020 research and innovation 
programme under grant agreement no.101017743.

PPM parameters
(personalised 
pinna mesh)

Personalised
HRTFs

[*] www.mesh2hrtf.org

Trained DNN
Mesh2HRTF*

Pinna-mesh 
representation 

(e.g., photo)

• Deep neural network (DNN) for parameter prediction from from ear images 

• Synthesis of a personalised pinna mesh

• Numerical calculation of head-related transfer functions (HRTFs)



[*] F. Perfler, F. Pausch, K. Pollack, N. Holighaus, and P. Majdak, “Accurate Parametric Modeling of the 
Human Pinna Inspired by Nature Using Bézier Curves,” 2024, Unpublished manuscript (in review). 
Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria.
[**] Guezenoc, C.; Renaud, S. (2020), "A wide dataset of ear shapes and pinna-related transfer functions 

generated by random ear drawings", JASA 147: 4087-4096 https://doi.org/10.1121/10.0001461

[***] www.blender.org

The parametric model: BezierPPM*

• Default model mesh: obtained via principal component
analysis of 119 individual ear meshes (WiDESPREaD**) 

• Armature definitions in BLENDER***

• 144 parameter dimensions:
• Global parameters (parent bone)
• Local shape curves (bendy bones)
• Local shape weights (shape keys)
• Four parameter types: 

Location, rotation, scale, shape keys



Parameter Estimation Framework

ℒ = 𝛾1ℒLocation + 𝛾2ℒScale +

Geodesic quaternion loss
T. Hempel, A. A. Abdelrahman, and A. Al-Hamadi, “6D Rotation 
Representation For Unconstrained Head Pose Estimation,” in IEEE 
International Conference on Image Processing (ICIP). Oct 2022.

𝛾3ℒShape Keys + 𝛾4ℒQuaternion
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Parameter estimation for a Linear Ballistic Accumulator model of 
auditory change detection with Markov-Chain Monte Carlo

R. Barumerli, K. Ignatiadis, D. Baier, B. Tóth, R. Baumgartner

• Approaching sounds perceptually more salient 
than receding sounds

• Potential reason: more hazardous, evolutionary 
advantage

Auditory looming bias 

Neuhoff, J. G. (1998). Perceptual bias for rising tones. Nature, 395(6698), 123–124. 



Sensory evidence is accumulated faster for looming sounds

Ignatiadis, K., Baier, D., Barumerli, R. et al. Cortical signatures of auditory looming bias show cue-specific adaptation between newborns and young adults. Commun Psychol 2, 56 (2024).

• Discrimination task: looming vs. receding (Human 
experiment)

• Prediction of human responses by computational model 
(parameter estimation via MCMC)

Linear ballistic accumulator

N = 28



Classification of Sequential Data

• Applications: bioinformatics, machine translation, speech recognition, animal vocalizations

• Classifiers: RNNs & LSTMs which capture temporal dependencies 

SequenceSequence
• Challenges: High data demands lead to 

ignoring sequential patterns, thus reducing 
accuracy (e.g., animal vocalization studies)

• Aim: Develop more explainable method 
without relying on extensive data.

Abbasi, R., Balazs, P., Hlawatsch, F., Zala, S. M., & Koliander, G. (in preparation). “Classifying sequential data: A Bayesian framework integr ating a soft classifier and a Markov model”.

R. Abbasi, P. Balazs, F. Hlawatsch, S.M. Zala, G. Koliander



Proposed classification architecture

• a soft classifier generates intermediate outputs 𝒒1:𝑁 for an input sequence 𝑥1:𝑁
• DMC integrates a Markov sequence model with 𝒒1:𝑁 through Bayesian 

inference and assigns labels 𝑦1:𝑁 to the input sequence 𝑥1:𝑁

Dirichlet-Markov Classifier (DMC)
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• DMC compared with Dirichlet-based model, Markov-based model, and CNN
• DMC outperformed all methods on both synthetic and real data

Results



Machine Learning  @

WWTF-funded focus on using  AI to study 
animal communication (2024-2028)



Decoding Elephant Communication with AI

• Wildlife preservation in increasingly human-dominated 
environment requires deeper understanding of animal
behaviour, cognition, perception, and communication

• Develop models to identify acoustic cues relevant for 
elephant communication

• Create/work with largest dataset of annotated/curated 
African savannah elephant vocalizations

Principal Investigators: Angela Stöger-Horwath, Peter Balazs



Planned project pipeline

• Combine advanced acoustic models 
with machine learning

• Computational models for elephant sound 
production and hearing + Evaluation in the 
wild

• Data- and knowledge-driven



ANIML – Understanding Animal Communication 
with Machine Learning

Core Team: M. Hoeschele (PI), N. Holighaus (CoPI), G. Koliander (CoPI), J. Oh (PD), Z. Katona (PhD)
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Context: When is a vocalization performed? Who or what else is 
present?

Structure: What pieces are us to build vocalizations, how are 
they ordered?

Understanding communication (human or animal) requires 
knowledge about context and structure.



Recording in context

• Humans and many animals mostly vocalize in social 
contexts and in groups

• Obtaining clean individual recordings in natural(-istic)  
situations is difficult

The approach of ANIML: 

• Obtain a large dataset of multi-microphone recordings of 
       animals (budgies) in a group

• Retrieve auxilliary position information via additional recording modalities (e.g., video)

• Separate into individual sources using physical models, state-of-the-art audio processing and ML



Making sense of complex vocalizations
• Segmenting complex animal (or human) 

vocalizations at silence is not sufficient
• How can meaningful segmentation be 

achieved?

The approach of ANIML [Q1]: 

• Expanding prior work on applying a universal 
speech segmenter to budgie vocalizations

• Verification of results using recombined, 
synthetic budgie vocalizations in behavioral 
tests



Making sense of complex vocalizations - II
• Semantics are (probably) important
• Search and test for meaningful patterns

The approach of ANIML [Q2 & Q3]: 

• Analyze recordings for repeating patterns on 
the scales of phrases and segments

• Analyze recordings with respect to timing 
between vocalizations in a 'conversation'



Goals for the dataset

• Large group size (8-16 individuals in an aviary)

• Consistent, reproducible recording conditions

• Raw audio (~110 channels) and video (~20 channels) data

• Preprocessed (separated, denoised) streams per individual

• Extended duration (100h+) 

• Meta-data: Recording conditions, individuals, time-stamps, 
pre-segmentation (by silence), etc. 

• Publicly available 



Technical Challenges

• Synchronize recordings between channels and modalities

• Track (many) individuals in video for position information

• Physics-based beamforming not good enough for separation

• Prior separation techniques (ML or otherwise) use only few 
channels (usually <10)

• Large number of sources

• Little training data (Synthesize?, Augment?, Fine-Tune?)

?



Machine Learning  @

Invertibility and Stability of Neural Networks
[Peter Balazs and Team(s)]



Mathematics for Machine Learning 

A solid mathematical foundation is crucial for ML. While the mathematical understanding of what
a neural networks can do – e.g. approximation properties – has impressively progressed recently, we set 
the focus on understanding why and how neural networks produce their output given their input.

Deep neural networks (DNNs) comprised of (affine) linear operators and (usually non-expanding, 
pointwise) non-linearities



Long-term Goal 

Understand (invertible) neural networks by expanding frame theory to include non-linear activation 
functions and developing new interpretable ML approaches in acoustics.

Frame theory:

Non-linear Frame theory: 



Injectivity and stability of ReLU-layers 

• Characterization of invertible ReLU-layers using frame theory 

• Estimates for lower Lipschitz-bound of ReLU-layers

• Algorithms for verification

D. Haider, M. Ehler, H. Eckert, D. Freeman, P. Balazs

Domain decompositions for computing maximal bias ensuring invertibility

Haider, D., Balazs, P., Ehler, M.,  "Convex Geometry of ReLU-layers, Injectivity on the Ball and Local Reconstruction" ICML 2023



Verification algorithms

• Deterministic: Polytope bias estimation

• Probabilistic: Monte-Carlo bias estimation



Encoding Audio in NNs 

Classical Approach: 



Encoding Audio in NNs 

End-to-End:

Interpretable? Stable? 



Differentiable Regularization of the Condition Number for 
numerically stable DNNs

• Condition numbers (CN) measure stability of linear operators (output energy can be estimated by 
input energy) -> include in loss function.

• Problems: 

• Dependence of CN on operator is discontinuous

• Trade-off between expressivity and stability?

R. Nenov, D. Haider, P. Balazs

Balazs P., Haider, D., Lostanlen, V., Perfler, F., "Trainable signal encoders that are robust against noise", Inter-Noise 2024 
Nenov, R., Haider, D. & Balazs, P. (2024). “(Almost) Smooth Sailing: Towards Numerical Stability of Neural Networks Through Differentiable Regularization of the Conditi on Number”. ICML 2024 Workshop on Differentiable 
Almost Everything

Denoising results on MNIST data (Panels: High, Medium, Low SNR)
Top: Noisy data, Middle: Denoising without CN regularization, 

Bottom: with CN regularization



A differentiable regularizer

Since                is not continuous in S,
use instead:

Regularization<–>Error Trade-off

• Minima coincide

• Almost everywhere differentiable

• Gradient steps are guaranteed to reduce CN



Encoding Audio in NNs 

Hybrid: 

Interpretable? Stable? 



Tightness for trainable audio encoders

• Analysis of Conv-Layers in audio encoders as oversampled FIR filter banks: Tightness = Small 
condition number

• Stability analysis of Gaussian random filterbanks (random initialization of network weights)

• Construction of tight hybrid filterbanks via perceptually-
   motivated inductive bias

D. Haider, F. Perfler, V. Lostanlen, M. Ehler, P. Balazs

Energy deviation for audio signals with different auto-
correlation characteristics

Haider, D., Lostanlen, V., Ehler, M., Balazs, P. , "Instabilities in Convnets for Raw Audio", IEEE Signal Processing Letters (2024)
Haider∗, D., Perfler∗, F.,  Lostanlen, V., Ehler, M., Balazs, P., "Hold Me Tight: Stable Encoder–Decoder Design for Speech Enhancement", Interspeech 2024



Results

• Effect of stabilization mechanisms

• Improved SNR in a denoising task



Machine Learning  @

Conclusion



Machine Learning  @            - Summary

• Varied interests in ML as a tool or a field of study

• Interdisciplinary cooperation in projects and via ML Team

• Different groups/projects require different tools and expertise

• Project-based structure naturally leads to fluctuation

• We believe we're doing pretty well, though. 

Thank you for listening! Join the tour of our lab if interested (directly after the talk).
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