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Overview

Introduction
o  Space Weather
o  Objectives
o Data used
Neural network architectures:
o LSTM as a recursive neural network
o Hyperparameter optimization with Optuna
o  Feature importance
Forecasting of SYM-H
o  Target variable predictions

o  Comparison with Siciliano et al using ACE data rovo

o Uncertainty analysis
Addition of solar wind feature variables

o  Compare RMSE, PICP and feature importance
Forecasting of ground level magnetic field

o  Data description

o Target variable predictions and RMSE for test storms
Conclusions



https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020SW002589
https://omniweb.gsfc.nasa.gov/form/omni_min.html
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Solar wind
Carries Coronal
Mass Ejections and
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ACE satellite

Located at Lagrange point L,
Measures:
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direction of solar wind
Magnetic field strength and
direction

Space Weather

The electric field carried by the solar
wind produces changes in magnetic
field across Earth's surface, resulting
in Geomagnetically Induced
Currents (GICs)

Ground observatories:
Measure magnetic field
strength and direction



Effects of GICs and goals

Impacts of GICs at ground level

e Disrupt radio communication and navigation
e Impact on electric power grids

e Locations of high latitude are particularly at
risk of the harmful effects of GICs.
o Low latitude locations have had a history
of GIC related events.
e The objectives of this project are to
o forecast SYM/H (a magnetic field index)
using data from ACE.
o forecast magnetic field at ground level
using data from ground observatories




Input variables

Training sub-dataset Validation sub-dataset Test sub-dataset

L We use th e same Storms 20 storms 5 storms 17 stonns

and time ranges as

Siciliano et al because we Data sample contains 42 of the fnost intehie geomagnetic storms,

distributed in two solar cycles (1998-2018)
want to reproduce their Tt ~ Tor ~
!abel Start Date Days SYM-H\ Label Start Date Days SYM-H
results. T1  14/02/1998 8 -119* T1  22/06/1998 8  -120
T2 02/08/1998 6 -168* T2 02/11/1998 10  -179*
: T3 19/09/1998 10 -213 T3 09/01/1999 9  -111
These were chosen for their |5 igmnmw 5 o || m ogme o o
T5  15/10/1999 10 218 T5  16/01/2000 10  -101*
; ; ; ; T6  09/07/2000 10 -347 T6  02/04/2000 10  -315
size and divers |ty In terms T7  06/08/2000 10 -235* T7  19/05/2000 9  -159*
. TS 15/09/2000 10 -196* TS  26/03/2000 9  -437
T9  01/11/2000 14 -174* T9  26/05/2003 11  -162*
of qua ntlty of pEa ks and T10  14/03/2001 10 -165* T10  08/07/2003 10  -125%
h T11  06/04/2001 10 -275 TI1  18/01/2004 9  -137*
T12  17/10/2001 10 -210 T12  04/11/2004 10  -394*
shapes. Validation Y /10/2001 10 -320 T13  10/09/2012 25  -138
- - - T4 17/05/2002 10 116+ T14  28/05/2013 7  -134
Sterael; SutDae Dam:  XMBE les  a5Ais008 0 10 -490 T15 26/06/2013 8  -110
V1 28/04/1998 10 268 T16  20/07/2004 10 -208 T16 11/03/2015 10  -234
V2 19/09/1999 7 -160 T17  10/05/2005 10 -302* T17  22/08/2018 12 -205
V3 25/10/2003 9 -432*

06/ i T18  09/04/2006 10 -110*
V4 18/06/2015 10 =207 19 09/12/2006 10 _211% " .
V5 01/09/2017 10 _146* ) &L 01403%012 i pre storms with more than oneeak
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Input variables: alternative split

A reordering of the storms within
the splits was used to check the
robustness of the algorithm with
respect to the train-test-validation

split.
O

Performance metrics in the
second split were not different
from the first

We may extend this idea and
perform full k-fold cross
validation

........................................ LSTL\" modcl (babeline storm list)..............._.........“......
. Training sub-dataset Validation sub-dataset Test sub-dataset
: 20 storms 5 storms 17 storms

i 3
H H
i i
i _‘.
|

L ________________

Training sub-dataset Validation sub-dataset Test sub-dataset
¢ 20 storms 5 storms 17 storms




Training procedure

e For this research, data are taken

from ACE, at the L1 Lagrange point,

and from the Ebre ground level
observatory in Spain

L1 variables only

e Feature variables:
SYM/H

By?

BZ

B

z

e Target variable

o O O O

An example of
how the
magnetic field
measurements
at both locations
compares for
four storms:
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Training procedure

e The data has a sequence dependence because it is a time-series
e The benchmark we choose to use for forecasting is an hour
o roughly what would be needed to respond to a GIC alert

"ﬁ Diow Prediction
l (M minutes forward)
< \ ?
- J
Y
‘L Input

(N minutes past)
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Choice of machine learning algorithm

e Long Short Term Memory neural network (LSTM) are good for data with a sequence
dependence, so they are very well suited to predict time-series like ours.
o LSTM an improvement on the standard recurrent neural network because it solves
the vanishing gradient problem by making its ‘short term memory last a long time’
e XxLSTM and Transformers: xLSTM is a rework of LSTM that includes new memory mixing
and exponential gating, and it seems to perform as well as state-of-the-art Transformers.
Any of these two are a natural next step after LSTM. We will be comparing results with
the present work using these two architectures in the future.

forget gate cell state

X input gate output gate

An LSTM cell 1
e



Input dims:
(lookback, storm length, #
features)

Model Architecture
e MR
Hidden dense layer
...n layers...

Hidden dense layer

Output dims:
(storm length - lookback)



Uncertainty estimation: bootstrap and dropout

Bayesian inference suggests that common regularization techniques in machine
learning, like bootstrap, dropout and others, are already good at providing
uncertainty estimations for final results and predictions.

Bootstrap vs dropout
o Inthe present study, bootstrap uncertainty estimations for predictions tended

to include more of the test data around the peaks while giving larger mean
square error (MSE) uncertainty.

Original Data
000000000000
H H ‘
Bootstrap sample 1 Bootstrap sample 2 Bootstrap sample n .
000000 000000 |000OCGOCGO
000000 (000000 XXX Y] e i

Bootstrap procedure Dropout in different neural network layers
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Bootstrap in this work

® Bootstrap,

(@)

Training is repeated on
different samplings with
replacements of the
original dataset.

Original Data
00000000OCGOCGOCO
H H H
Bootstrap sample 1 Bootstrap sample 2 Bootstrap sample n
000000 o000O0O 000000
o000O0O [ NN N N N J 000000




Bootstrap in this work

Original dataset
Storm TR1 Storm TR2 Storm TR3 Storm TR18 Storm TR19 Storm TR20
® Bootstrap Time series 1 (3 N W N o o o o o o o o NN 10
.. . Time series 2 (B]) [ [
o Training is repeated on Time series 3 3) | N N < < » o » o o NN
different Sampllngs with Time series 4 (SYM-H ) [N I DN o ¢ ¢ o o o NN
replacements of the |
Or|g | nal dataset :- ---------------------------------------- Block-bootstrapping method  cececmccc e e
i
‘ B I OC k bOOtStra p, E Re-sampled dataset (instance 1)
o For time_series data, é ‘ . i Storm TR18 Storm TR7 Storm TR1 Storm TR13 Storm TR20 Storm TR2
L iy | Teseries | (8) S oo+ o+ B —
chunks of data need to i Time series 2 (B]) | KCETETYRy O | e
, | Timeseries3(3) N e e+ + - + » IR E—
be grouped in blocks to | Time series 4 (SYM-H ) | N I I « o o ¢ « o o » I [
1
conserve time E .
1
dependence ! :
E Re-sampled dataset (instance 200)
E Storm TR5 Storm TR18 Storm TR20 Storm TR3 Storm TR20 Storm TR1
| Timeseries 1 () S sooscoeo NN —
E Time series 2 (B;) | sceevens 1
| Timeseries3 () [N DN cecscoeo NN E—
| Time series 4 (SYM-t1) [ A coceseeo NN [—
e i rmrem o i e i e 7 7 1 o i T P e o e e TR R e e




Hyperparameter optimization

Hyperparameters are values that control the learning process. We identified four possibly
important hyperparameters in our LSTM setup: learning rate, look-back time, number of
dense hidden layers and number of units in each hidden layer.
The choice of hyperparameter values is done by trial and error: one trains and tests data
using different combinations of hyperparameters in their multidimensional space and
optimises fitness or objective function result.

o The possible combination of hyperparameter values is great or just infinite, so the

choice of what combinations to try itself is done in different ways,

Bayesian
optimization
o’ "’ identifies potential
o . i wells
C =
= =
= Y=

0 -05 00

0 -05

Random search Bayesian optimization (Optuna)
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Hyperparameter optimization results

Optuna offers a systematized way of
searching the multidimensional

hyperparameter space through bayesian ' _
optimization. | .

o This is more efficient than grid search
or random sampling
The graph shows the relative importance
of each hyperparameter with respect to

Hyperparameter
3

b

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

the IOSS fUI’]CtIOI’] Importance for Objective Value
o The learning rate, for all models, is
always the most dominant

contributor.
17



Groups of best hyperparameter sets

£ 6
: e Two trials with the same hyperparameter set can
°% 2 a result in a value of the loss function that varies
n_layers
. : more greatly than trials with different
600 {®
of .l hyperparameters.
m.! . 2 21 e Trials with uncertainty intervals for the MSE
— 6: estimation that overlapped with the best optuna
n_layers
Jr "1, result are labeled ‘best trials’
e ® L%
= e 1. = 3 These results show that some hyperparameters
] L ] ' = - L] . . .
104y L . have optimal values at different regions, and not
il Tl g — at a single optimal ‘well’
n_layers n_units log(ir)
2150 1 150 ':;_150-
g : e % o _g o ° o.*o ’ g ° *.o .o“ it
50*0 [ ] e o 50‘.- ® 307 ™o oo
6 i t; Z.%O 5(’)0 750 1075 1(;“ = l(;" 50 100 150
n_layers n_units Ir lookback (steps) 18




Predictions (SYM-H)

Plots show the target variable (SYM/H)
prediction with respect to time for two of the
17 test storms.

The orange bands represent the 95%
confidence interval of the predicted value by
our model.

The dots represent the actual test values,
orange if within the uncertainty band and blue
if outside the band.

The percentage of predicted values is the
proportion of test values inside the
uncertainty band. This was pivotal in choosing
bootstrap over other ways to estimate
uncertainty

SYM/H nT

SYM/H nT

50

o

-100

" 95% c.i. for predicted values
« Test data outside predicted values
Test data inside predicted values (35.2%)
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Predictions (SYM-H)

RMSE
e Comparison between our i; el ol This worics resultava |
prediction and the model from 151
- 141 ()
Siciliano et al. 13 4
e For RMSE of the target variable, all 12 t—e—e
11 g
but six of the referenced values are £ 10
i . . = (ot
within the 95% confidence intervals & | — )
for the RMSE obtained with this 7 i
. 6 —eo—ie
work's model. DY ——
e In all of those six cases, our i P
present model gives RMSE values 2 —e——
. 11— ted
that are lower with 95% : : : : .
5 10 15 20 25
confidence. RMSE (nT)
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SYM-H (nT}

Look-forward 30 mins

Predictions (SYM-H)

Look-forward 60 mins

Look-forward 90 mins

BN Prediction {95% CLI
wws Prediclion mesn
— Test vawes

%000mfs

BN Pregcton {95% CL}
wew Precclor mesn
- Test values

mifs

BN Predctonm |95% CL)
wew Presclon mean
— Test values

mifs

Multiple-hour 50
predictions for
storm 11.

SYM-H [nT)
|
W
o

Look-forward 120 mins

Look-forward 210 mins

Look-forward 300 mins

BN Prediction (95% CL|
me= Pradiction maan
— Test va ues

mifis

BN Predchor {99% CL)
we= Pred clios maan
—— Test voiues

~2000mifls

BN Precictom [93% C1)
=== Pred cton mean
—— Test values

mins
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Predictions (SYM-H)

Multiple hour predictions for storm 11, storm 12 and all storms:

o RMSE increases with respect to look-forward
o RMSE uncertainty increases with respect to look-forward

Full data set

22
20+
18-
i~ 161
£
w 141
(V)]
= 121
101

50 100 150 200 250 300
Look-forward (min)
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Feature Importance

Values or a particular variable are shuffled and the rMSE is calculated.
A bigger error bar signifies that the shuffled variable is more important, as its

spoiling results in large error.

Sym-H

BZ

Feature

B;
--~- Baseline RMSE = 8.6 +£ 0.8 nT
E B RMSE after shuffle
0 5 10 15 20 25 30
RMSE (nT)
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Uncertainty analysis: intrinsic variation

PICP: the prediction

interval coverage 1.0
probability gives us an

evaluation of how much of 0.81
the data is within

uncertainty bounds. o 0.61
By itself, the estimated a
uncertainties seems to be A
underestimated.

By including SYM-H 0.2
intrinsic variation, PICP -

approaches ideal value

All storms: Full storm

b ---|deal PICP for given coverage
Including SYM-H
" intrinsic variation
® PICP for this work
1 2 3 4

Coverage (0)
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PICP

Uncertainty analysis: time mismatch

By shifting the predictions with respect to the true values in time, we observe
that the PICP improves when the predictions are shifted back.
o Thisis a inherent feature of RNN architectures forecast models, and so
time mismatch is a source of error.

This, together with the inclusion of the intrinsic variation of SYM-H might

completely correct the missing uncertainty estimation.

All storms

1.0

Storm T11

Including SYM-H
intrinsic variation

--- PICP 0.95
$ PICP this work

PICP

0.8 -

0.6 -

0.4 4

0.2 1

Including SYM-H
intrinsic variation

--- PICP 0.95
¢ PICP this work

-40 20
Time shift (min)

0

20

0.0

-40 -20
Time shift (min)

1

I

1

1

1

|
—-60

0

20

PICP

1.0

0.8

0.6 1

0.4

0.2

0.0

Storm T12

Including SYM-H

$  PICP this work

1

1

1
] ! 5 intrinsic variation
e e ¥ ___ PICP0.95

1
1
i
—-80 -60 -40 -20
Time shift (min)

0

20
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Adding more variables

Other works forecasting SYM-H include more variables from the
L1 ACE satellite. With their inclusion, we may compare

o Feature importance plot
o Uncertainty estimation (PICP)
o Time mismatch

Original variables Solar wind additional\
variables

® Feature variables:

e Feature variables: Vx: velocity
Sl p: density

O

° B, o T:temperature

c Ey o P: dynamic pressure
O

z

o) Es: electric field /

26




Feature

Adding more variables: Feature importance

e Interms of RMSE, new variables don’t seem to pose an improvement.

e The baseline values are compatible.
e The uncertainty estimation is bigger with the additional variables

Sym-H

BZ

Feature
°

|
Sgn(Bz) : ~—~ Baseline RMSE = 9.7 = 1.3 nT

- Baseline RMSE = 8.6 = 0.8 nT
Bl RMSE after shuffle

Bl RMSE after shuffle

0 5 10 15 20 25 30 0 5 10 15 20 25
RMSE (nT) RMSE (nT)
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Adding more variables: PICP

With the addition of new variables, the PICP values are closer to the ideal
curve. Uncertainty estimation is bigger.
o This could mean that uncertainty estimation is more ‘“truthful’, or simply
that the forecasting is ‘messier’

Full storm

}  long
1 ¥ Original

0.0 0.5 1.0 15 2.0
Coverage (0)
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Future work: ground level forecasting

e [orthe second analysis in this work, we aim
to predict magnetic field at ground level
using data taken only from the Ebre
observatory at ground level.

e We are interested in forecasting the
horizontal geomagnetic field. B_is chosen as
the target variable. An advantage of this
choice over By is that B _has the larger
influence on the appearance of GICs.

29




Preliminary results: Ebre predictions

We obtain an analogous model for ground level prediction, which gave a
forecasting that contained less of the data and bigger RMSE in nT than the SYM/H
model in comparison

25125
25100
25075
25050

&

= 25025

&
25000
24975
24950
24925

Uncertainty bands: Bootstrap

with 200 runs

95% c.i. for predicted values

« Test data outside predicted valug
« Test data inside predicted valu @

£
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*’Mif {j ! :“M‘i%&ﬂ*i?ﬂ*:q:
4 Ba8y  d¢
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« Test data inside predicted valud® (38.1%)
-
Fuanfusaf? ol s
§ -y : ik, |

ﬁ;%

&

e

Storm T7 ,E
o 500 1000 1500 2000 2500

Time (min)

storm

H N WA UO N 00O

RMSE (nT)

RMSE
e l®{ Only EBRE _
5 10 15 20 25 30



Conclusions

e We obtained a forecast model for SYM/H which features uncertainty measures via
bootstrap and dropout.

e RMSE results for L1 are either compatible with Siciliano et al in most cases or better in
the ones that are statistically different. The improvement can be mainly explained by
the hyperparameter optimization via Optuna and the betterment of the initial dataset.

e We observe that both RMSE values and their uncertainties grow with higher
look-forward values, making forecasting increasingly more unreliable.

e Considering an ideal PICP uncertainty values appear to be underestimated. The
intrinsic variation of SYM-H and the inherent systematic time mismatch of RNN
architectures may explain this underestimation

e The addition of other solar wind variables does not improve either RMSE or time
mismatch. Uncertainty estimation is larger, which impacts positively on PICP.

e We obtain an analogous model for ground level prediction, which gave a forecasting
that contained less of the data (smaller PICP) and bigger RMSE than the SYM/H model.

31
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Thank you




Model Architecture for Dropout

g Hidden dense layer

(e

q Hidden dense layer

33




Bootstrap and Dropout in this work

Dropout,

o A set proportion of random units in the
neural network are turned off every
time data is predicted with the model.
This proportion is represented by p.

Concrete dropout
o  Continuous approximation of the
effect of dropout on the loss function
can be automatically optimized for the
dropout p.

Image source: Srivastava, Nitish, et al. "Dropout: a simple way to prevent
neural networks from overfitting”, JMLR 2014
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Identified hyperparameter

e Hyperparameters are values that control the learning process.
We identified four hyperparameters in our LSTM setup:

©)

Learning rate. In this work, this value changes in a triangular cycle
throughout epochs, and the value to be optimized is the central value of
the cycle, with its width given by the standard deviation of the chosen trial.
Look-back, relevant during the preparation of data for LSTM algorithm.
Number of dense neural layers after the LSTM layer and before the
output dense layer.

Number of units in the inner dense layers. We simplified this to mean the
same number for all dense layers.

35



Hyperparameter search

Prediction without SYM-H
(a)

0.8 [~ All points

e The choice of what combinations to try o %:::

itself is done in different ways:
o  Grid search

T 1 T

~0-CNN  -e- LSTM
1 1 L ! ! L h I

1
90180 360 540 720 1080 1440 1800 2160 2520 2880
120 Look-back (minute)

(b)

o5 - g
o Random Sampling ~g;;:/ e —
o  Optuna: Bayesian optimization flavour (5:' S
called "Tree-structured Parzen Estimator" grE e W R o = b
TPE

Genetic algorithm

Etc...
® Optuna offers different search algorithms. The

one chosen was the default one, TPE, as we
didn’t want to do more than 1000 trials and the
hyperparameters are [almost] uncorrelated.
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https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020SW002589
https://www.youtube.com/watch?v=P6NwZVl8ttc

Comparison of RMSE with other references

60 minutes look-forward

e Newer works have also reproduced 112_*&_ ° ;'idtvl't’llgltt"t
Siciliano et al results, with considerable EZ*’:’ cmblais
improvements T13{

e An important observation is their inclusion gy .
of other ACE satelite variables that we e I
chose to omit & IZ - — "

e Our data is compatible up to 2 sigma with Ié i
their results, except in storms T17, T16, T12 LT -
and T8 where they outperform us. e i

T2 e
T1{ et
5 10 15 20 25

RMSE (nT)
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Ground level forecasting

Data from the Ebro in the 90’s and early
2000s had many missing observations
due to a nearby railway. The team at
Ebro complemented this data by
referring to the San Pablo de los
Montes-Toledo observatory to compare
and interpolate in case of gaps in the
Ebro observations.
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This work’s R? results vs Siciliano

e For the coefficient of
determination, R*2:

©)

©)

13 of the referenced values
are within our 95% confidence
intervals

4 of the referenced values are
below our 95% confidence
intervals

storm

(I = T S R R ST ST R SR
O R N WHMUULO N

H N W PR UO N OO

R2
~ « Siciliano et al. results losl——
| | This work's results v2 FE3SL
. Ll
| Sl )
o
o
oo
[P T |
l' | ) |
o ——
& e
]
075 080 0.85 090 0.95
R2
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L1 predictions (SYM-H)

e Cross-correlation between prediction and true values shows a consistent

time mismatch throughout all look-forward predictions

LF6, Mismatch 1 mins

LF18, Mismatch 37 mins

-== pres

Storm 12

LF12, Mismatch 15 mins

pred

=== pred
-=- msttest [/ N\
/

-1000 0 1000 -1000 0 1000 -1000 0 1000
Time (mins) Time (mins) Time (mins)
LF24, Mismatch 59 mins LF42, Mismatch 137 mins  LF60, Mismatch 220 mins
" aned 5 = o P g F
——- wtee S —-- wstee [ N —- wstten S N
N prediens. ¥ . e ) - pedes s )

— L *

- ewdport ¥
s

—ipoet ©
v

|

-1000 0
Time (mins)

1000

-1000 0
Time (mins)

1000

-1000 0
Time (mins)

e This time mismatch is lower than
the look-forward, which means
some predictive power is gained

1000

Time mismatch (min)

300 -

200 -

100+

o

Storm 12

Time mismatch
versus look-forward

—_— x=y

100

200 300

Look-forward (min)
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-0.10

1.0

051

0.0

051

-1.0
-15
-2.0
-2.5

Prediction of derivative of SYM/H.

Next steps

Different time derivative calculation methods
More noise and tighter look-forward window
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