CERN CH-1211 Geneva 23 Switzerland

Project Document No. FCC-xx-xxxx

CERN Div./Group or Supplier/Contractor Document No.

EN/EL -SY/EPC

EDMS Document No.

FUTURE CIRCULAR COLLIDER PRE-TDR DESCRIPTION						
TECHNICAL INFRASTRUCTURE WP4 ELECTRICITY & ENERGY MANAGEMENT						
Abstract This document describes the proposal for the Work Package Electricity and Energy management needed for pre-TDR phase (2025-2028).						
Prepared by:Checked by:Approval Leader:Jean-Paul Burnet (CERN) Mario Parodi Davide AgugliaAll TIWG WP Holders (CERN) Jean-Paul Burnet Klaus Hanke Tim Watson Johannes Gutleber Franck ZimmermanMichael Benedikt Michael.Benedikt@cern.chATS Department Head 						
Approval List :						
FCC-TIWG-WP-Holders@cern.ch,						

FCC Project Document No.

Page 2 of 13

		His	story of Cha	anges	
Rev. No.	Date	Pages		Description of Changes	
	9 September, 2024		First draft		

Page 3 of 13

Tab	le	of	Con	ter	nts
-----	----	----	-----	-----	-----

1.	INTRODUCTION AND CONTEXT	4
2.	PRE-TDR OBJECTIVES	4
3.	WP ELECTRICITY AND ENERGY MANAGEMENT	4
4.	WP4 STRATEGIC SCHEDULE	4
5.	WP4 PROCUREMENT PLAN	5
6.	WP4 INTERFACES	5
7.	WP4 IMPACT ON CIVIL ENGINEERING DEFINITION	6
8.	WP4 RESEARCH & DEVELOPMENT	7
9.	WP4 MATURITY AT THE COMPLETION OF THE FEASIBILITY S	TUDY7
10.	DESCRIPTION OF THE PRE-TDR WORKS	8
11.	PRELIMINARY SCHEDULE FROM EN-EL	11
12.	PRELIMINARY SCHEDULE FROM SY-EPC	11
13.	MANPOWER & BUDGET	12
13.1	SUMMARY TABLE EN-EL	
13.2	EN-EL POST DESCRIPTIONS	
13.3	SUMMARY TABLE SY-EPC	
13.1	SY-EPC POST DESCRIPTIONS	

1. INTRODUCTION AND CONTEXT

The FCC feasibility study will be terminated in 2025 and presented at different scientific bodies. The next step is the approbation of FCC by the CERN council in 2028 after the completion of the European Particles Physics Strategy foreseen in 2027. A pre-TDR phase is proposed to cover this period with the goal to be ready to launch Civil Engineering procurements right after the CERN council approval. The civil engineering procurement phase is divided in two main phases. Phase 1, different contracts to design the civil engineering construction (2028-2029), phase 2, different contracts for the civil engineering construction (2029-2031). The plan is to start the civil engineering construction in 2031 for a completion foreseen in 2038. The first installation works of the technical infrastructure will start in 2037. The first installation works of the accelerators will start in 2040. The first installation works of the approved.

2. PRE-TDR OBJECTIVES

The period before the approval is defined as a pre-TDR phase and its main objective is to be able to launch the civil engineering procurement right after the approval. Many studies have to be completed to be able to launch this procurement, this concerns the technical infrastructures design, the accelerators design, the experiments design and all the studies for the authorisation process. The objective of this document is to define all the work to be performed during this period for the work package 4.

3. WP ELECTRICITY AND ENERGY MANAGEMENT

The FCC machines will require a strong electricity supply for power demand in the order of 400 to 600MW. A Detail study was performed for the Feasibility Study with 3 sub-stations at 400kV as delivery points. FCC-hh and FCC-ee were considered and a strong baseline was achieved including the delivery points and sub-station voltage, the transmission between points and the failure scenarios to secure the electricity supply, the integration of energy production and storage, the immunity against transient disturbances, and the power quality.

The objectives for the Pre-TDR are to complete the technical design of the grid and to validate the space required underground for electrical sub-stations, all cables, distribution boards...

This includes:

Update of the power demand and optimization between FCC-ee and FCC-hh

Define the grid connection and the architecture of the HV network

Design of the underground distribution including secured and uninterruptible networks Some studies will continue in parallel with

The develop of the optimization tool Capex+opex

The study of alternative DC transmission systems

The study Energy Storage Systems

4. WP4 STRATEGIC SCHEDULE

The main milestones of the WP4 are listed in the Table 1:

Table	1:	WP4	strategic	schedule
Tuble	÷.		Sciucegie	Schedule

2028	Completion of engineering design of underground sub-stations and distribution
	Completion of power demand
	Completion of grid connection requirements
	Completion of engineering design of surface sub-stations
2031	Delivery of local grid connection for civil engineering construction sites
2037	Start of the installation of electrical infrastructures (in shaft)
2038	Delivery of HV grid connection (RTE)
2042	Start of the commissioning of the FCC electrical network
2043	Completion of the electrical infrastructures
	Electrical network operational

5. WP4 PROCUREMENT PLAN

The main milestones of the WP4 procurement plan are listed in the table 2:

Table 2: WP4 strategic procurement plan

2028	Placement of contract for Local grid connection
2030	Placement of contracts HV grid connection
2031	Start of the procurement process, MS
2033	Start of call for tenders, IT
2035	Placement of contract for installation Works
	Placement of contacts for transformers, cables, switchgears

6. WP4 INTERFACES

The work package is interconnected to most of the others work packages as electricity power everything, see Figure 1, the interconnections map.

Page 6 of 13

Figure 1: WP4 interconnections map

Dependency Impact analysis on electricity and energy management from other stakeholders is detailed in Table 3.

Table 5. Wr4 dependency impact analysis table	Table 3: W	P4 dependency	/ impact ar	alysis table
---	------------	---------------	-------------	--------------

	Low	Moderate	High	Description
Civil engineering		\boxtimes		Size of alcoves
Experiments		\boxtimes		Sie of service cavern
Accelerators			\boxtimes	Power demand, cabling
Technical	\boxtimes		\boxtimes	Power demand, cabling
infrastructures				
Environmental	\boxtimes			Technology selection
impact				
Authorisation			\boxtimes	Grid connections
process				

7. WP4 IMPACT ON CIVIL ENGINEERING DEFINITION

The WP4 impacts on the civil engineering requirements is detailed in table 4 with the level on integration works performed for the Feasibility study.

Page 7 of 13

Integration	Basic estimation	Draft integration	Detailed integration	description
Underground alcoves				However, depends on the power demand evolution
HV sub- station in service caverns				However, depends on the power demand evolution
Distribution for Experiments	\boxtimes			No study performed
Surface sub- stations	\boxtimes			No study performed
Energy storage	\boxtimes			No study performed

Table 4: Level of integration

8. WP4 RESEARCH & DEVELOPMENT

The work package is largely based on classical industrial products on the market. Some innovations are introduced to respond to specific needs of the project. The main R&D topics are:

- Energy storage
- Smart grid control
- Availability and robustness with FACTS
- DC grids

9. WP4 MATURITY AT THE COMPLETION OF THE FEASIBILITY STUDY

The works performed during the feasibility study are the main inputs for the Pre-TDR phase. Some parts of the work package are more advanced than others, see table 5.

Design	Conceptual phase	Research phase	Preliminary engineering	description
Grid connection			\boxtimes	Study performed by RTE and ENEDIS
HV sub- station	\boxtimes			Proposal for Gas Insulated Switchgear
MV network				Study and selection of voltage levels

Table 5: Maturity of the design

Page 8 of 13

Energy storage		Evaluation of different solutions
Smart grid control	\boxtimes	RF2.0 project

The advancement of the WP in relation to the overall project schedule is detailed in table 6.

Global schedule	behind	In phase	In advance	
Grid connection		\boxtimes		Study performed by RTE and ENEDIS
HV sub-station		\boxtimes		Proposal for Gas Insulated Switchgear
MV network		\boxtimes		Study and selection of voltage levels
Energy storage		\boxtimes		Evaluation of different solutions
Smart grid control		\boxtimes		RF2.0 project

Table 6: WP4 advancement

10. DESCRIPTION OF THE PRE-TDR WORKS

Task 1: Update of the power demand and optimization between FCC-ee and FCC-hh (EN-EL, SY-EPC)

- Update power demand from the different loads
- Update for FCC-ee and FCC-hh
- Participate in the accelerator designs to minimize infrastructure needs
- Try to define a common electrical infrastructure compatible with the two machines
- In view of minimizing costs of the first FCC-ee stage, and to minimize the upgrade costs toward the next FCC-ee stages and FCC-hh, provide solutions aiming at reusing specific components (e.g. distribution transformers). The optimal powering distribution solution shall integrate a staged approach.

|--|

Deliverables	Time	Comments
Task 1.1: Power demand	June 2027	

Task 2: Define the grid connection and the architecture of the FCC High-voltage network (EN-EL)

- Review the connection to the French and Swiss electrical grids
- Define the number of connection points and the voltage level of the sub-station

Page 9 of 13

- Define the architecture of the internal high-voltage network to supply all loads and experiments
- Build a software model of the HV network
- Define failure scenario and study back-up solution
- Define the preliminary requirements for integration (surface and underground)

Table 8: Task 2 deliverables

Deliverables	Time	Comments
Task 2.1: Grid connection	June 2027	

Task 3: Development of a global optimisation tool for FCC powering (SY-EPC)

- Develop a global optimisation tool to help with the technical choices taking into account investment and operational cost. Starting with basic cost (investment and operational) and volume models, develop an optimization environment able to provide rapid answers to the project in terms of general performances (cost, volume in primis). This environment will be flexible enough to adapt to specifications changes and to different powering topologies. In view of gradually improving this environment, a constant effort will be provided to refine models.

Table 9: Task 3 deliverables

Deliverables	Time	Comments
Task 3.1: Optimisation tool	June 2026	

Task 4: DC transmission systems (SY-EPC)

- Study DC transmission solutions (e.g. topologies, controls, protection strategies) and provide advanced models to be integrated into a global optimization environment (performances, cost, volumes, etc.).
- Compare solutions with and without DC transmission systems in terms of investment and operational costs. This includes the impact cost on civil engineering and services (collaboration with other WPs and WUs).

Table 10: Task 4 deliverables

Deliverables	Time	Comments
Task 4.1: DC tranmission	June 2027	

Task 5: Energy Storage Systems and power quality (SY-EPC)

Evaluate existing and evolving technological solutions for Energy Storage Systems (ESS). Develop ESS models (performances and cost) and use them in the global optimization environment to determine the best ESS and location in the distribution network (HV, MV, LV, AC side or DC side). Explore ESS solutions considering the FCC integration environment.

Table 11: Task 5 deliverables

Deliverables Time Comments

Page 10 of 13

Task 5.1: Energy storage	June 2028	

Task 6: Investment and operational costs (EN-EL, SY-EPC)

- Other than investment cost models, special attention shall be given to operational costs. Losses models need to be developed to estimate the energetic cost of operation. Reliability models are essential to estimate failure rates and provide hints on topological solution (e.g. with redundancies). Availability (downtime) shall be addressed and solutions for fast repairing need to be studied.

Table 12: Task 6 deliverables

Deliverables	Time	Comments
Task 1.1: Cost model	June 2027	

-

Task 7: Minimize energy consumption and introduce sustainability (EN-EL, SY-EPC)

- Analyse how to minimize energy consumption
- Analyse how to introduce energy production or new concept of energy storage in the FCC infrastructure

Table 13: Task 7 deliverables

Deliverables	Time	Comments
Task 7.1: Energy consumption	June 2027	

Task 8: study of the underground distribution system

- Definition of principles for underground distribution
- Definition and modelling of typical LV distribution schemes
- Definition of principles for secured and uninterruptible networks

Table 14: Task 8 deliverables

Deliverables	Time	Comments
Task 8.1: LV Distribution	June 2028	

Page 11 of 13

11. PRELIMINARY SCHEDULE FROM EN-EL

12. PRELIMINARY SCHEDULE FROM SY-EPC

FCC Project Document No.

FCC-xx-xxx

Page 12 of 13

13. MANPOWER & BUDGET

13.1 SUMMARY TABLE EN-EL

EN-EL		2025	2026	2027	2028	2029
Manpower [FTE]						
	Engineer (ENG)					
	Technician (TEC)					
	Fell/PJAS (FEL)					
	PhD					
	FSU (FSU)					
Material Budget [kCHF]					
	Total					
	Used					
	Carry over					

13.2 EN-EL POST DESCRIPTIONS

Engineer 1, staff name: Senior electrical engineer, WP manager and grid study leader. Engineer 2, staff to be hired: Junior electrical engineer, design of LV dristribution Engineer 3, fellow electrical engineer: young graduate, study of energy storage ...

13.3 SUMMARY TABLE SY-EPC

SY-EPC		2025	2026	2027	2028	2029
Manpower [FTE]						
	Engineer (ENG)					
	Technician (TEC)					
	Fell/PJAS (FEL)					
	PhD					
	FSU (FSU)					
Material Budget [kCHF]						
	Total					

FCC Project Document No.

Page 13 of 13

Used			
Carry over			

13.1 SY-EPC POST DESCRIPTIONS

Engineer 1, staff name: Senior electrical engineer, WP manager and power design leader.

Engineer 2, staff to be hired: Junior electrical engineer, Power electronic engineer, design of high-efficiency converters

Engineer 3, fellow electrical engineer: young graduate, study of medium voltage converters for RF HVPS.

•••