

FUTURE CIRCULAR COLLIDER

Technical design and priorities

Jean-Paul Burnet CERN

4 October 2024

http://cern.ch/fcc

- FCC-ee update
- FCC-ee Pre-TDR at MTP2024
- FCC-ee Pre-TDR work package description
- FCC organisation
- FCC sustainability studies

Content

FCC-ee UPDATE

Sustainability as key aspect of the project

Energy and sustainability

The Future Circular Collider is under study and its sustainable development is a major focus toward its approval. Sustainability is introduced at all levels, from renewable energy sources to the design of accelerator system devices and technical infrastructures. The indirect emissions from purchased electricity have to be minimized by low-carbon sources such as the ones of the FCC construction. The study of waste heat supply to local communities will also be highlighted as well as the OpenSky laboratory to demonstrate the reuse of molasse. The collaborative works performed in the European Project; Research Infrastructure 2.0 framework will demonstrate the physics community's commitment toward sustainable research.

Engineering challenges

➤Safety ➤ Sustainability ➤ Feasibility >Affordability

➢ Performance

Develop safe concepts Reduce the environmental impact Identify challenges and propose solutions Cost optimisation

Reach physics objectives

Design focused on these criteria

Energy Management and Sustainability Aspects for FCC, ESSRI2024

Reference layout PA31 – 90.7km

Layout chosen out of ~ 100 initial variants, based on **geology** and surface constraints (land availability, access to roads, etc.), environment, (protected zones), **infrastructure** (water, electricity, transport), **machine** performance etc.

"Avoid-reduce-compensate" principle of EU and French regulations **Overall lowest-risk baseline: 90.7 km ring, 8 surface points, 4-fold symmetry**

FCC-ee underground schematics

Tunnel Circumference: 90.7 km

Excavated vol: 6.2M m³ (In the ground)

Access shafts: 12

Construction shafts: 1

Large experiment sites: 2

Small experiment sites: 2

Technical sites: 4

Deepest shaft: 400m

Average shaft depth: 243m

Total concrete volume: 1.9 M m³

Steel weight: 130,000 metric tonnes

Update of integration

Cross-section of the arc tunnel (11km)

FLUKA model of FODO cell (ZH, ttbar)

Synchrotron radiations absorbers and shielding

→ 20 photon stoppers in FODO cell

Courtesy A. Letchner

Photon stopper

Effect of shielding: cumulative dose (ttbar)

Synchrotron radiations absorbers and shielding

Shielding material for full ring					
Dipoles	2580				
Photon stoppers	10				
Shielding weight per stopper	400 kg				
Total weight	10320 tons				

Photon stoppers include W-alloy layer in both cases

Annual dose (182.5 GeV, ttbar)

Update of RF

SRF new baseline

Material	$\lambda(nm)$	$\xi(nm)$	κ	$T_{\rm c}({\rm K})$	$H_{c1}(T)$	$H_{\rm c}({\rm T})$	$H_{\rm sh}({\rm T})$
Nb	40	27	1.5	9	0.13	0.21	0.25
Nb ₃ Sn	111	4.2	26.4	18	0.042	0.5	0.42

preparation recipes

Alternative option to accelerating gradient

Baseline option: spe (doping) to improve

Alternative option ca instead of 2 K

Courtesy Frank Peauger, ATDC 22-04-24

Baseline option: advanced fabrication technics, advanced coating (HiPIMS) & advanced surface

improve the E _{acc} and the Q ₀ factor	 New very attractive FCCee RF baseline which simplifies the SRF system configuration only 2 types of cavities.
	• Specifications for cavity performances are challenging – high Q_0 , high E_{acc} – for continuization.
cial curface processing	 Encouraging test results obtained 400 MHz with HiPIMS Nb/Cu coating – will be in seamless and electropolished cavities (verified at 1.3 GHz).
the Q_0 factor	 Doping of bulk Nb will be tried at 800 MHz with US labs (5 single cell cavities und fabrication).
	 Nb3Sn is a game changer – requires strong R&D.
	• Significant effort on SRF infrastructures upgrades (clean rooms, cold testing capa
avities to operate at 4.5 K	• Other studies on-going – not mentioned here : cryomodules, RF couplers, Nb/Cu
•	non-mechanical freq. tuner, magnetic flux expulsion, SWELL

12

ı at 800 MHz,

Update of personnel transport

People transport vehicle

Alcoves integration

Arc cell mock-up

Arc half-cell = the most repeated region of mechanical hardware the tunnel

 \rightarrow 77 km over 90 km are arc cells

Goals =

 \rightarrow Construct a half arc cell mock-up to **test aspects** related to:

- Cost
- Integration
- Assembly
- Stability inspection
- Security

- Transport
- Installation
- Alignment
- Maintenance
- Safety
- Fabrication, machining capabilities for critical components

\rightarrow "Visual" driver for FCC stakeholders, visitors and collaborating researchers

Reminder of planning

Mid-March: we fixed the arc layout for the mockup, presented at FCC week

- → Q2-Q3 2024: Mock-up systems design
- → Q3-Q4 2024: Elements fabrication
- \rightarrow Q1 2025: Installation of the first version (combination of dummy and real structures)
- \rightarrow after 2025: possible evolution of the Mock-up (replacement of dummy structures with real ones)

FCC Pre-TDR at MTP2024

FCC timeline till start of the construction

Pre-TDR goal

Priorities as seen by DG

FCC studies

Main goal of the Feasibility Study: determine whether or not there are any showstoppers for the implementation of the project

The "pre-TDR" phase will bring the study to the level needed by the Council to take a decision at end-2027/beg-2028 on whether or not FCC should be approved Note: project approvals are usually based on advanced technical documentation (goal of the FCC pre-TDR); construction start requires a full TDR

Main goal of "pre-TDR phase": further develop the civil engineering and technical components and their integration, in particular to provide a consolidated cost estimate with reduced uncertainties (aim 5-20%, for part of the components)

Will cover the period April 2025 to end 2027 and be concluded with a pre-TDR

Total funding of ~ 139 M over 2.5 years for:

- -- detailed R&D and design study of main technical components and civil engineering to reduce cost uncertainty
- -- full project integration study, as needed for consolidated cost estimate
- -- environmental impact study (quantitative analysis of impact of FCC-ee components and mitigation measures)
- -- CERN contribution to detector conceptual design and integration studies

Council's conclusions:

- □ however: necessary budget is allocated until such time as the Council's decision is taken

a specific decision would be taken on the "pre-TDR phase" in due course (i.e. "pre-TDR phase" is not approved yet)

Pre-TDR priorities

Priorities as seen by the Council

For 2027-2028, project approval, start of CE design contract:

- Compensation for the land used at surface sites (SAC)
- CO2 footprint over full project lifecycle (SAC, SPC, Council)
- Environmental impact and sustainability (FC, Council)
- Discuss sustainability issues for FCC-hh (SPC)
- SCRF performance improvement (Q and gradient) (SAC)
- R&D on NEG coating to reduce risks (SPC)
- Procedures for conservation of He (SAC)
- Sensitivity to commodity prices (SAC)
- Continue to develop benchmarks as reference for FCC-ee cost (CRP)
- cost (FC)
- Risks of not achieving FCC-ee luminosity (SPC)
- Provide discussions of additional science (dark sector, forward physics, etc.) (SPC)

 Communication campaign with local population, including physics case, socio-economic benefits (SAC, FC, SPC) **Technical design**

• Revisit CERN's procurement policies and learn for other big facilities to ensure balanced industrial return without increasing

Pre-TDR priorities

Priorities as seen by technical designers

Very high priorities

- SRF
- Vacuum
- Radiations
- Energy consumption
- Alignment

High priorities

- Design of all accelerator systems
- Design of all infrastructures
- Integration

Goal: Increase the technical design level to be able to define all subsurface areas and surface building

sustainability

- Eco-design
- Optimisation
- LCA
- **Environmental impact**

Affordability

- Industrial production
- Technology innovation
- Procurement strategy / in-kind

MTP 2024 posts

FCC posts

			202	5 2026	2027	2028
🗆 SY	SY-ABT	FCC-MTP24-1 Electromagnetic kicker pre-design and impedance shielding	0,75	1,00	1,00	2,75
		Total	0,75	1,00	1,00	2,75
	🗆 SY-BI	FCC-MTP24-2 Concept and pre-design of arc and IR BPMs	0,25	1,00	1,00	2,25
		FCC-MTP24-3 Concept, machine protection aspects and pre-design of overall BLM system	0,50	1,00	1,00	2,50
		Total	0,75	2,00	2,00	4,75
	SY-EPC	FCC-MTP24-4 RF HEK and magnet powering, layout and CE implications	0,75	1,00	1,00	2,75
		FCC-MTP24-5 Environmental impact, sustainability and energy recovery	0,25	1,00	1,00	2,25
		Total	1,00	2,00	2,00	5,00
	SY-RF	□ FCC-MTP24-6 □ Impedance calculations	0,75	1,00	1,00	2,75
		Total	0,75	1,00	1,00	2,75
	SY-STI	FCC-MTP24-7 Energy deposition simulations for tunnel radiation and shielding	0,50	1,00	1,00	2,50
		E FCC-MTP24-8 Final focus, IR, detector radiation and shielding studies, integration	0,25	1,00	1,00	2,25
		Total	0,75	2,00	2,00	4,75
	Total		4,00	8,00	8,00	20,00

SRF R&D posts not part of FCC

MTP 2024 MPA

FC	C MPA						2025	2026	2027	2028		
	Total						0,2	0,8	0,0	1,0	1,0	3,0
⊟ SY	⊖ SY-ABT	 Beam transfer hardware component pre-designs, focusing on performance specifications, design concepts, impedance aspects (including electrostatic separators) 	⊡ GRAD	⊡ 2025	January	Memo	1,0	1,0	1,0			3,0
		 Transfer line layout, optics and design, including failure cases and machine protection needs for ABT systems, absorber specifications and their impedance 	□ DOCT	⊡ 2025	January	Memo	1,0	1,0	1,0			3,0
		Total					2,0	2,0	2,0			6,0
	SY-BI	BLM system manufacturing	DOCT	⊡ 2025	January	Memo	1,0	1,0	1,0			3,0
		BPM system performance aspects	DOCT	⊡ 2025	January	Memo	1,0	1,0	1,0			3,0
		Instability monitoring	DOCT	⊡ 2026	January	Memo		1,0	1,0	1,0		3,0
		 Luminosity monitoring and polarimeter 	GRAD	⊡ 2025	January	Memo	1,0	1,0	1,0			3,0
		Total					3,0	4,0	4,0	1,0		12,0
	SY-EPC	Pre-design optimisation studies for FCC-hh and FCC-ee	DOCT	⊡ 2025	January	Memo	1,0	1,0	1,0			3,0
		Pre-design studies for FCC-hh and FCC-ee with impact on CE	🖯 GRAD	⊡ 2025	January	Memo	1,0	1,0	1,0			3,0
		Total					2,0	2,0	2,0			6,0
	SY-RF	Fundamental SRF R&D	DOCT	⊡ 2026	January	Memo		1,0	1,0	1,0		3,0
		Impedance simulations and measurements	DOCT	□ 2025	January	Memo	1,0	1,0	1,0			3,0
		Longitudinal beam dynamics	DOCT	⊡ 2025	January	Memo	1,0	1,0	1,0			3,0
		Total					2,0	3,0	3,0	1,0		9,0
	SY-STI	Coupling FLUKA to tracking codes	DOCT	⊡ 2026	January	Memo		1,0	1,0	1,0		3,0
		 Dump, protection device and collimator conceptual designs 	🖯 GRAD	⊡ 2025	January	Memo	1,0	1,0	1,0			3,0
		Pre-injector positron/electron source	DOCT	⊡ 2026	January	Memo		1,0	1,0	1,0		3,0
		 Radiation input for environmental impact and TDR 	🖯 GRAD	⊡ 2025	January	Memo	1,0	1,0	1,0			3,0
		Radiation levels	DOCT	⊡ 2025	January	Memo	1,0	1,0	1,0			3,0
		Total					3,0	5,0	5,0	2,0		15,0
	Total						12,0	16,0	16,0	4,0		48,0

2025 2026 2027 2020

MTP 2024 budget (M)

FCC budget

🖯 SY

Ξ	SY-ABT	Θ
Θ	SY-BI	Θ
Θ	SY-EPC	Θ
Θ	SY-RF	\ominus
Θ	SY-STI	Θ
	Total	

		2025	2026	2027	2028		
Average	0,0	140,0	140,0	140,0	140,0	140,0	700,0
Average	0,0	280,0	350,0	350,0	490,0	420,0	1 890,0
Average	0,0	210,0	210,0	210,0	70,0	70,0	770,0
Average	0,0	70,0	350,0	350,0	280,0	0,0	1 050,0
Average	0,0	280,0	420,0	420,0	420,0	280,0	1 820,0
	0,0	980,0	1 470,0	1 470,0	1 400,0	910,0	6 230,0

Pre-TDR work package Template

The pre-TDR phase needs to be clarified with departments and groups. Additional resources already distributed to department. But agreement has to be clarified with FCC project and department.

<u>Proposal: Write Work package description</u> (presented in ATDC 19 Sept, TIWG 9 Oct)

Draft template done for Electricity & Energy management, to be adapted if needed for all WP.

Pre-TDR work package Template

1.	INTRODUCTION AND CONTEXT	4
2.	PRE-TDR OBJECTIVES	4
3.	WP ELECTRICITY AND ENERGY MANAGEMENT	4
4.	WP4 STRATEGIC SCHEDULE	4
5.	WP4 PROCUREMENT PLAN	5
6.	WP4 INTERFACES	5
7.	WP4 IMPACT ON CIVIL ENGINEERING DEFINITION	6
8.	WP4 RESEARCH & DEVELOPMENT	7
9.	WP4 MATURITY AT THE COMPLETION OF THE FEASIBILITY STUDY	7
10.	DESCRIPTION OF THE PRE-TDR WORKS	8
11.	PRELIMINARY SCHEDULE FROM EN-EL	11
12.	PRELIMINARY SCHEDULE FROM SY-EPC	11
13.	MANPOWER & BUDGET	12
13.1	SUMMARY TABLE EN-EL	. 12
13.2	EN-EL POST DESCRIPTIONS	. 12
13.3	SUMMARY TABLE SY-EPC	. 12
13.1	SY-EPc Post descriptions 13	

FCC ORGANISATION

Pre-TDR organisation

Accelerators FCC-ee F. Zimmermann, T. Raubenheimer

Accelerator Technical Design

JP. Burnet, T. Raubenheimer

- Beam transfer systems •
- Beam instrumentations
- Beam Intercepting Devices ٠
- Magnets, MDI
- Vacuum
- Power converters •
- Radiation & shielding
- Radio Frequency
- Survey & alignment
- System engineering and interface management
- Radiation WG
- MDI WG
- Arc mock-up WG
- System engineering and *interface management*

Collider & Booster Design

F. Zimmermann, C. Carli

- Parameters
- Optics •
- Beam dynamics ٠
- OP parameter interface
- Operation concept incl. BBA ٠
- Machine protection
- Polarisation & energy • calibration
- Interfaces
- Booster design WG
- EPOL WG ٠
- Machine protection WG

Transfer Lines Design

W. Bartmann

- Parameters
- Optics
- Beam dynamics •
- OP parameter interface
- Operation concept incl. BBA
- Machine protection
- Interfaces

Injector 20GeV

- P. Craievich, A. Grudiev
- e-/e+ sources
- Linacs
- Damping ring ٠

No change...

FCC SUSTAINABILITY STUDIES

Greenhouse gas production of the construction

Life Cycle Assessment for civil engineering construction

Performed by WSP (BG consulting) consultant within the framework EN17472 Study includes surface sites and subsurface.

A1 - A3 Product stage

Al Raw material extraction A2 Transport to manufacturing site A3 Manufacturing

A4 - A5 Construction stage

A4 Transport to construction site A5 Installation / Assembly

B1-B5 Use stage

Bl Use **B2** Maintenance **B3** Repair **B4** Replacement **B5** Refurbishment

C1 - C4 End of life stage

C1 Deconstruction & demolition C2 Transport C3 Waste processing C4 Disposal

Presented at FCC week 2024 by Dr. Dasaraden Mauree (WSP)

Greenhouse gas production of the construction

Life Cycle Assessment for civil engineering construction

Performed by WSP consultant within the framework EN17472. Study includes surface sites and subsurface. Initial (classical construction techniques) gives 1.2MtCO2e. Optimised (selection of low carbon emissions techniques) gives 550ktCO2e.

FCC construction equivalent to 3-6 years of LHC experiments direct emissions Between 1 to 2 times FCC total indirect emissions from purchased electricity (over 24 years)

Impact CO2	Initial	Optimised	Reduction
Subsurface	1 056 391 tCO2(eq)	505 005 tCO2(eq)	52%
Technical site x4	54 800 tCO2(eq)	17 600 tCO2(eq)	68%
Experimental site x4	114 800 tCO2(eq)	31 200 tCO2(eq)	73%
Total	1 170 800 tCO2(eq)	553 805 tCO2(eq)	55%

Benchmark	Emission CO2	Optimised	Emission CO2
Steel sheets, generic, 0% recycled content, S235, S275 and S355	3.91 kgCO2e/kg	Steel sheets, generic, 100% recycled content, S235, S275 and S355	0.87 kgCO2e/kg
Steel fibre for concrete reinforcement, 0%	2 09 kaCO2e/ka	Steel fibre for concrete reinforcement, 100% recycled	0.51 kgCO2e/kg
Reinforcement steel (rebar), generic, 60% recycled content (only virgin materials), A615	1.41 kgCO2e/kg	Reinforcement steel (rebar), generic, 100% recycled gcontent, A615	0.42 kgCO2e/kg
Ready-mix concrete, normal strength, generic, C35/45 (5000/6500 PSI) with CEM I, 0% recycled binders (340 kg/m3; 21.2 lbs/ft3 total cement)	327.02 kgCO2e/m ³	Ready-mix concrete, normal strength, generic, C35/45 (5000/6500 PSI) with CEM III/A, 60% GGBS content (340 ³kg/m³; 21.2 lbs/ft³ total cement)	170.36 kgCO2e/m
Ready-mix concrete, low-strength, generic, C12/15 (1700/2200 PSI), 0% recycled binders in cement (220 kg/m3 / 13.73 lbs/ft3)	217.91 kgCO2e/m ³	Ready-mix concrete, low-strength, generic, C12/15 (1700/2200 PSI), 40% recycled binders in cement (220 ³kg/m³ / 13.73 lbs/ft³)	149.41 kgCO2e/m
Ready-mix concrete, normal-strength, generic, C40/50 (5800/7300 PSI), 0% recycled binders in cement	384 kgCO2e/m ³	Ready-mix concrete, normal-strength, generic, C40/50 (5800/7300 PSI) with CEM III/B, 75% GGBS content in ³ cement	173.00 kgCO2e/m

Waste heat supply study

Opportunities for waste heat use

Host states are requesting to include waste heat use in the design of future CERN projects from the beginning on.

This encompasses diverse aspects such as technical, economic, and societal dimensions.

- \rightarrow Identification of the opportunities and viability
- \rightarrow Feasibility of the technical concept
- \rightarrow Interactions with local authorities (FR) and SIG (CH)

Study carried out with Ginger Burgeap :

Phase 1 : Study on the	consumption potentials
------------------------	------------------------

- Phase 2 : Study of the energy recovering process and optimisation pathways
- Phase 3 : Technical-economic assessment and complementary technologies (ongoing)

presented at FCC week 2024 by A. Guiavarch.

Waste heat supply study

Emitted heat – annual production (GWh)

Fatal heat per point available for reuse. Data analysis of potential large heat consumers (100MWh/y) in a range of 5 km.

Site/Mode	z	w	н	L. S	tt
PA	138	152	172	16	225
PB	15	18	23	0	34
PD	138	152	172	16	225
PF	15	18	23	0	34
PG	138	152	172	16	225
PH	230	314	336	4	524
PJ	138	152	172	16	225
PL	25	48	56	2	109
Total per year	836	1 005	1 128	68	1 603

Temperature range : 40°C / 50°C (except 70°C for cryogenics)

Waste heat supply study

Challenge to meet production with loads

FCC thermal energy production

Heat recovery rate, 27% (5km range), 45% with extended range. Rate increase to 37% with calendar shift. Max rate with extended range and calendar shift is 55%. Needs large investment from host states. Could decrease the indirect emissions by 20% to 50%

Local thermal energy loads

Period of time			Mode Z
		Annual recovered heat [GWh]	HRR ¹
Base case	Target zones	223	27%
	Target and extended zones	374	45%
Time-shifted calendar	Target zones	308	37%
	Target and extended zones	462	55%
Site-to-site distribution	Target zones	278	33%
	Target and extended zones	521	62% ¹
No integration in urban areas with existing urban networks		64	16%

Reuse of excavated molasse - OpenSky lab

Innovative local approach for materials management

A new experimental site is under construction at LHC point 5 for demonstration of soil construction from molasse for different use cases and plant species

¹ Amundson et al., 2021, ² Banerjee et al., 2023

- Agriculture and forestry are promising use cases for transformed molasse materials
- Functional soils contribute to CO₂ capture and

Presented at FCC week 2024 by C.Staudinger

TOTEX optimization tool

Global optimisation Solving for Best TOTEX

Objective : reaching the minimum Total Expenditure while complying with constraints. Solver's evolutionary optimisation algorithm identify the most likely optimal solution, meaning the best solution found within the given time frame.

- Weighting Factor set to 1 so far, meaning that Operation and Capital Expenditure have the same weight

TOTEX optimization tool

Global optimisation Solving for Best TOTEX

The Global Model found an optimised solution by considering Capital and Operational Expenditures.

Preliminary global optimisation results shows that: ≥9 alcoves per arc seems to be optimal Bigger cable Trays needed.

Booster Quadrupole powered from Big Alcoves. Collider Dipole, Quadrupole and Corrector in aluminium coil.

But increasing magnet losses by 10%...

What's next : Includes CO2e emissions by systems to evaluate the carbon footprint of each solution

100.0 100 2.4 7.6 86.8 90 Normalised Detailed Expenditure [%] 5.4 2.5 EN-EL CAPEX 80 9.3 **Alcove CAPEX** 19.3 2.2 Cooling CAPEX 70 1.2 Converter CAPEX 12.8 3.8 1.0 **Converter OPEX** 60 6.4 4.2 **Trays CAPEX** 3.1 7.0 Cable CAPEX 50 1.0 Cable OPEX 40 30 42.9 38.6 Magnet CAPEX 20 10 Magnet OPEX 7.9 8.0 0 **Optimised Solution** Baseline

R&D sustainable accelerators power grids

HORIZON - RESEARCH FACILITY 2.0: TOWARDS A MORE ENERGY-EFFICIENT AND SUSTAINABLE PATH

- Equip LHC with grid monitoring and automation system that leverages high-speed and time-synchronized measurements (Zaphiro)
- Built a digital twin of a large accelerator based on LHC measurement (KIT)
- Design an FCC electrical network able to integrate renewable energy and energy storage (CERN)

Presented ESSRI24 by . Sapountzoglou

Component

Summary

- Sustainability is a key aspect of the project
- All designs and R&D are focused on carbon footprint optimisation
 - Energy savings to reduce the power demand and energy consumption Reduction of material needed
- Pre-TDR phase needs to be clarified on the deliverables
- Work package description to be written to help project organisation

Toward sustainable accelerators

Thank you for your attention

38