

FCC ee – BI Workpackages

S. Mazzoni, R. Keiffer, D. Butti, M. Gasior, E.R. Howling, A. Schlogelhofer, K. Lasocha and T. Lefevre

SY-BI group

Overview of BI for FCCee

	Dump line	Main ring	Booster ring	Injection line	20GeV linac	Common linac	e- linac	e+ DR	e+ TL	e+ linac	Total
Quadrupole BPM	20	5800	2944	420	82	35	11	258	30	17	9617
Special BPM (tune,											
chromaticity,)		20) 5					4			29
Collimator BPM		66	5	5							71
BLM fast	20	100		200							320
BLM arc cell monitoring		1468	8								1468
Fast BCT, WCM	3	4	2	1	2	2	2	1	4	2	23
DC BCT		4	2					1			7
Tranverse profile											0
Screen (OTR/ODR)	6	6	5 2	20	2	2	2	2	4	2	48
Synchrotron rad.		4	1					1			6
Laser Wire Scanner		2	2								2
Longitudinal profile											0
b/b profile (EOS, Streak)		2	2 1		1	1	1	1	1	2	10
LDM, Coherent rad.		2	2 1		1	1	1	1	1	2	10
Beamstrahlung / luminosity		8	8								8
Polarimeter		2	-								2

11621

BI Workpackage Proposal

8 Tasks

- 1. Coordination, collaboration and cost/industrialisation
- 2. Beam intensity and tune monitoring
- 3. Beam loss monitoring
- 4. Beam position monitoring
- 5. Transverse profile monitoring
- 6. Longitudinal profile monitoring
- 7. Instrumentation required to Energy calibration and polarisation, i.e. measurement of Energy spread and Compton polarimeter in close collaboration with EPOL WG
- 8. Instrumentation for Luminosity monitoring and optimisation, e.g. Beamstrahlung and Bhabha scattering monitors in close collaboration with MDI WG

BI Workpackage Proposal

• 8 Tasks

Different categories

Standard solutions VS challenging specifications requiring extensive R&D

Small number of devices VS very large serie (standardisation and industrialisation)

A good news - there is no complex design that needs to be produced in large quantity

Task 1 – Coordination, Collaboration and Cost/industrialisation (Stefano, Ray and Thibaut)

- Coordinate the beam instrumentation work for FCCee
 - Weekly meeting internal to SY-BI
 - Monthly meeting with external collaborators (<u>https://indico.cern.ch/category/8560/</u>)
- Develop cost model for Beam instrumentation and for industrialization
 - Identifying components that can be standardized throughout the complex
 - Looking for industrial partners
 - Investigating best ways for industrialisation and cost/design optimisation

Task 1 : Coordination	on	2025	2026	2027	2028
Available Manpower	[FTE]	0.4	0.4	0.4	0.4
Engineer/Physi	cist	0.4	0.4	0.4	0.4
Technician/ Te	ch. Engineer				
Missing Manpower [F	TE]	0	0	0	0
TOTAL [FTE]		0.4	0.4	0.4	0.4
Material Budget [kCH	F]				
AOB (travel.,	collaboration)	20	20	20	20
Total [kCHF]		20	20	20	20

 Will require more resources when project is approved (>2028)

Task 2 - Beam Intensity and Tune Monitoring (Marek Gasior)

- Collect the specifications for beam intensity and tune measurements in the FCCee collider rings from others WP in terms of resolution, accuracy and dynamic range.
- Design both DC beam and bunch-by-bunch intensity measurement systems
- Design of tune monitoring systems (on-going work at Solaris <u>10.18429/JACoW-IBIC2024-THP59</u>)

Years:	T ₀ -15		T ₀ -10		T ₀ -5		T ₀ -1
R&D							
Design + prototyping							
Industrialization + pre-series							
Series prod. + testing							

Functional specifications

- At least 10 different designs (Main rings, booster and injector) for each monitors (Tune, Fast and DC BCTs)
- Assuming no shortage of workforce (not the case today !)
- Small numbers of units <50 and relatively standard solutions
- Assuming beam tests can be performed on existing facilities (i.e. CLEAR, SOLARIS, ..)

Task 2 - Beam Intensity and Tune Monitoring (Marek Gasior)

- Collect the specifications for beam intensity and tune measurements in the FCCee collider rings from others WP in terms of resolution, accuracy and dynamic range.
- Design both DC beam and bunch-by-bunch intensity measurement systems
- Design of tune monitoring systems (on-going work at Solaris <u>10.18429/JACoW-IBIC2024-THP59</u>)

Task 2 : Beam I	ntensity and Tune monitoring	2025	2026	2027	2028
Available Manpov	ver [FTE]	0.1	0.1	0.1	0.1
	Engineer/Physicist	0.1	0.1	0.1	0.1
Missing Manpowe	r [FTE]	0	0	0.1	0.1
	Engineer/Physicist				
	Technician/ Tech. Engineer			0.1	0.1
	TOTAL [FTE]	0.1	0.1	0.2	0.2
Material Budget [kCHF]				
	Design and prototyping		20	20	20
	FSUs				
	AOB (travel., collab.)	10	10	10	10
	Total [kCHF]	10	30	30	30

- Types of monitors (tune, fast and DC BCTs)
- Adapting design from similar existing monitors for TDR phase
- Small development budget for validation on existing machines
- With current resources most of the work starting after project approval

- Task 3 Beam Loss Monitoring (Belen, Christos, new staff in 2026, new TS in 2025)
- Collect the specifications for the FCCee BLM system linked to Machine protection and operation needs
 - fast bunch by bunch monitors and slower (turn by turn) monitors
- Design a BLM monitoring system capable of identifying losses from main rings vs booster
- Design a Beam loss monitor insensitive to SR x/γ -rays.
- Rad-hard, rad-tol Arc cell electronic acquisition system

Years:	T ₀ -15		T ₀ -10		T ₀ -5		T ₀ -1
R&D							
Design + prototyping							
Industrialization + pre-series							
Series prod. + testing							

- At least 2 different designs slow and fast BLMs
- Large numbers of units ~ 10000
- Need to study industrialisation for cost reduction
- Installation time not discussed here
- This is just starting now !

- Task 3 Beam Loss Monitoring (Belen, Christos, new staff in 2026, new TS in 2025)
- Collect the specifications for the FCCee BLM system linked to Machine protection and operation needs
 - fast bunch by bunch monitors and slower (turn by turn) monitors
- Design a BLM monitoring system capable of identifying losses from main rings vs booster
- Design a Beam loss monitor insensitive to SR x/γ-Task 3 : Beam Loss Monitoring
- Arc cell electronic acquisition system
- New staff for BLM and Ph.D student for simulations and monitor design
- Graduate for the design of electonic DAQ (radhard solution) at 50% with BPM DAQ
- Material budget for developing detectors and testing prototypes

inging 103303 norm main migs vs b				
Task 3 : Beam Loss Monitoring	2025	2026	2027	2028
Available Manpower [FTE]	0.2	1.2	1.3	1.3
Engineer/Physicist	0.2	1.2	1.3	1.3
Technician/ Tech. Engineer				
Missing Manpower [FTE]	1	1.5	1.7	1.7
Technician/ Tech. Engineer			0.2	0.2
Graduate		0.5	0.5	0.5
TS/PhD	1	1	1	1
Associate				
TOTAL [FTE]	1.2	2.7	3	3
Material Budget [kCHF]				
Design and prototyping	100	100	100	100
FSUs		10	10	10
M4P	40	95	95	95
AOB (travel., collab.)				
Total [kCHF]	140	205	205	205

Task 4 - Beam Position Monitoring (Emily, Marek, Diogo, new staff in 2025,...)

Design and prototype of a low impedance pick-up

- Electro-magnetic simulations, Heat load simulations and design of water cooling system
- Mechanical design integrated in the machine layout including alignment tolerances
- Prototyping and validation by laboratory and beam tests
- Design a cost-efficient bunch-by-bunch and turn-by-turn data acquisition system
 - System architecture and cost including radiation hardness, ORAMS aspects
 - Prototyping laboratory and beam tests

Years:	T ₀ -15		T ₀ -10		T ₀ -5		T ₀ -1
R&D							
Design + prototyping							
Industrialization + pre-series							
Series prod. + testing							

- Different designs Arc BPMs, IR BPMs, Booster and injector BPMs
- Large numbers of Arc BPMs ~ 9000 (Main rings and booster)
- Study in collaboration with TE-VSC, TE-MSC, EN-MME, BE-GM
- Orbit feedback not mentioned here but should be discussed how to launch the study

 Task 4 - Beam Position Monitoring (Emily, Marek, Diog Design and prototype of a low impedance pick-up Electro-magnetic simulations, Heat load simulations and design of Machanical design integrated in the machine layout including align 					
 Prototyping and validation by laboratory and beam tests 	Task 4 : Beam Position Monitoring	2025	2026	2027	2028
Design a cost-efficient bunch-by-bunch and turn-by-turn da	Available Manpower [FTE]	1.2	1.3	1.3	1.3
System architecture and cost including radiation hardness_ORAM	Engineer/Physicist	1.2	1.3	1.3	1.3
 Prototyping – laboratory and beam tests 	Technician/ Tech. Engineer	0	0	0	0
	Missing Manpower [FTE]	1	2.7	1.7	1.7
• New staff for BPM and Ph.D student for simulations and	Engineer/Physicist				
monitor design (Arc and IR BPMs)	Technician/ Tech. Engineer		0.2	0.2	0.2
	Graduate		0.5	0.5	0.5
 Graduate for the design of electonic DAQ (rad-hard 	TS/PhD	1	2	1	1
solution) at 50% with BLM DAQ	Associate				
	TOTAL [FTE]	2.2	4	3	3
 Material budget for developing detectors and testing 	Material Budget [kCHF]				
prototypes	Design and prototyping	80	80	80	80
prototypee	FSUs	; 10	10	10	10
Challonging RPM OLIAD alignment Test benches /	M4F	, 0	135	95	95
Maak up Dudget for thet is not requested here !	AOB (travel., collab.)	,			
wock-up – Budget for that is not requested here !	Total [kCHF]	90	225	185	185

Task 5 - Transverse Beam Size/Profile Monitoring (Stefano, Daniele, KEK, Alba, Uni. Milano) Design and prototype of a Beam Size monitoring system based on Synchrotron Radiation interferometer

- Simulations of the Synchrotron radiation source properties and of the SR extraction system.
- X-ray monitor systems using Pinhole imaging systems and interferometric systems (KEK, Alba, Univ. Milano)
- Design of a Beam Profile monitoring system based Laser wire scanner
 - System design and integration including beam tracking simulations of Compton photons and electrons (similar to polarimeter)
- Design of a Beam imaging system larger system and different designs
 - System designed reusing standard solution adapted to FCCee needs

Years:	T ₀ -15		T ₀ -10		T ₀ -5		T ₀ -1
R&D							
Design + prototyping							
Industrialization + pre-series							
Series prod. + testing							

- Complex design of SR based monitors requiring longer R&D, several iteration for design
- Medium numbers of Beam imaging sytems across the complex
- Some diversity in equipment types, X-ray detectors, laser and optics

Task 5 - Transverse Beam Size/Profile Monitoring (Stefa Design and prototype of a Beam Size monitoring system ba • Simulations of the Synchrotron radiation source properties and of the	ano, Daniele, KEK, Alba, Uni. Mi ased on Synchrotron Radiation inte	l ano) ərferc	omete	er	
 X-ray monitor systems using Pinhole imaging systems and interference 	Task 5 : Transverse Profile Monitoring	2025	2026	2027	2028
Design of a Beam Profile monitoring system based Laser w	Available Manpower [FTE]	0.6	0.7	0.2	0.2
 System design and integration including beam tracking simulations 	Engineer/Physicist	0.6	0.7	0.2	0.2
Design of a Beam imaging system – larger system and diffe	Technician/ Tech. Engineer	0	0	0	0
 System designed reusing standard solution adapted to FCCee nee 	Missing Manpower [FTE]	0	1.2	2.7	2.7
Covered with existing staffs and graduates	Engineer/Physicist			1	1
Would pood add Staff in 2027	Technician/ Tech. Engineer		0.2	0.2	0.2
	Graduate			0.5	0.5
Now Dh D student requested for SD monitor design	TS/PhD		1	1	1
• New Ph.D student requested for SK monitor design,	Associate				
prototype and validation	TOTAL [FTE]	0.6	1.9	2.9	2.9
	Material Budget [kCHF]				
 Graduate for the TDR phase 	Design and prototyping	100	150	150	150
	FSUs	;			
 Material budget for developing detectors and testing 	M4F	0	40	95	95
prototypes (collab with Uni. Milano and Alba)	AOB (travel., collab.)	110	60	10	10
	Total [kCHF]	210	250	255	255

S. Mazzoni- FCC - 4th October 2024

Task 6 – Longitudinal profile Monitoring (Andreas, Kacper. KIT)

Design and prototype of a Bunch Length monitoring system based on Electro-Optical (EO) Spectral Decoding (KIT)

- Design and prototyping of an in-vacuum, low impedance EO pick-up with appropriated resolution
- Design of a bunch-by-bunch, turn-by-turn acquisition system with sub-picosecond time resolution

Design and prototype of a Bunch Length monitoring system based beam induced radiation (CERN)

- Design of radiation source : Synchrotron radiation or Cherenkov Diffraction radiation
- Testing of incoherent Cherenkov Diffraction radiation (KEK and IOTA)
- Testing of coherent radiation monitoring at CLEAR

Years:	T ₀ -15		T ₀ -10		T ₀ -5		T ₀ -1
R&D							
Design + prototyping							
Industrialization + pre-series							
Series prod. + testing							

- New technologies requiring longer R&D, several iterations for design and prototyping
- Collaboration with KIT, RHUL, KEK and FNAL

prototypes at CLEAR, ATF2@KEK and IOTA@FNAL

T D	ask 6 – Longitudinal profile Monitoring (Andreas, Kacper Design and prototype of a Bunch Length monitoring system ba	r, KIT) ased on I	Electro-Optical (EO) Spec	ctral I	Deco	ding	(KIT)	
•	Design and prototyping of an in-vacuum, low impedance EO pick-up with ap	Task 6 : Lo	ngiudinal Profile Monitoring	2025	2026	2027	2028	
Г	Design of a bunch-by-bunch, tum-by-tum acquisition system with sub-picose	Available Ma	anpower [FTE]	0.5	0.5	0	0	
L	Design of radiation source : Synchrotron radiation or Cherenkov Diffraction r		Engineer/Physicist	0.5	0.5			
•	Testing of incoherent Cherenkov Diffraction radiation (KEK and IOTA)		Technician/ Tech. Engineer	0	0	0	0	
•	Testing of coherent radiation monitoring at CLEAR	Missing Mar	npower [FTE]	0.5	2.2	3.2	2.7	
		-	Engineer/Physicist			1	1	
			Technician/ Tech. Engineer		0.2	0.2	0.2	
•	Covered with existing graduates (not funded by FCC)		Graduate					
	• Would need add. Staff in 2027		TS/PhD	0.5	2	2	1.5	
			Associate					
•	New Ph.D students requested for monitor design,		TOTAL [FTE]	1	2.7	3.2	2.7	
	prototype and validation	Material Bud	dget [kCHF]					
			Design and prototyping	100	100	100	100	
•	Material budget for developing detectors and testing		FSUs	10	10	10	10	

Total [kCHF]

M4P

AOB (travel., collab.,

Task 7- Energy Calibration and Polarisation with EPOL WG (Robert)

Compton Polarimeter

- System design and integration including beam tracking simulations of Compton scattered photons and electrons
- Design of laser technology, laser interaction chamber, detection of Compton scattered photons and electrons. It includes impedance studies for laser interaction chamber.
- Prototype of the laser system, the interaction chamber and the detectors

Years:	T ₀ -15		T ₀ -10		T ₀ -5		T ₀ -1
R&D							
Design + prototyping							
Industrialization + pre-series							
Series prod. + testing							

- Complex system and integration requiring R&D, several iterations for design and prototyping
- EPOL WG with external collaborators (IJClab) and SY-STI for laser systems

Task 7- Energy Calibration and Polarisation with EPOI	_ WG (Robert)				
 System design and integration including beam tracking simulations of (Task 7 : Energy Calibration & Polarisation	2025	2026	2027	2028
 Design of laser technology, laser interaction chamber, detection of Cor 	nAvailable Manpower [FTE]	0.5	0.5	0.5	0.5
studies for laser interaction chamber.	Engineer/Physicist	0.5	0.5	0.5	0.5
 Prototype of the laser system, the interaction chamber and the detector 	Technician/ Tech. Engineer				
	Missing Manpower [FTE]	1	1.2	1.2	1.2
	Engineer/Physicist				
	Technician/ Tech. Engineer		0.2	0.2	0.2
Covered with existing staff	Graduate				
	TS/PhD	1	1	1	1
New Ph.D student requested for monitor design,	Associate				
prototype and validation	TOTAL [FTE]	1.5	1.7	1.7	1.7
	Material Budget [kCHF]				
Material budget for developing detectors and testing	Design and prototypin	g	50	200	200
prototypes	FSU	s		10	10
	M4	P 40	40	40	40
	AOB (travel., colla	b 10	10	10	10
	Total [kCHF]	50	100	260	260

Task 8 - Luminosity monitoring (Robert)

Design, integration and prototyping of a Beamstrahlung monitor

Design, integration and prototyping of a Bhabha scattering monitor

- Complex system and integration requiring R&D, several iterations for design and prototyping
- MDI WG and collaboration with SY-STI for BS dump line

Task 8 - Luminosity monitoring						
Design, integration and prototyping of a Beamstrahlung Task 8 : Luminosity Monitoring / Beamstrahlung Available Manpower [FTE]		2025	2026	2027	2028	
		Available Manpower [FTE]			0.5	0.5
Design, integration and prototyping of a Bhabha scatter	r	Engineer/Physicist		0.5	0.5	0.5
	Technician/ Tech. Engineer					
	Missing Manpower [FTE]		1	1.2	1.2	1.2
		Engineer/Physicist				
Covered with evicting a staff		Technician/ Tech. Engineer		0.2	0.2	0.2
Covered with existing staff		Graduate				
		TS/PhD	1	1	1	1
 New Ph.D student requested for monitor design, 		Associate				
prototype and validation		TOTAL [FTE]	1.5	1.7	1.7	1.7
	Material Budget	[kCHF]				
Material budget for developing detectors and testing		Design and prototyping	1	50	200	200
prototypes		FSUs	5		10	10
		M4F	40	40	40	40
		AOB (travel., collab	10	10	10	10
		Total [KCHF]	50	100	260	260

Total BI	2025	2026	2027	2028
Available Manpower [FTE]	4	5.2	4.3	4.3
Engineer/Physicist	4	5.2	4.3	4.3
Technician/ Tech. Engineer	0	0	0	0
Missing Manpower [FTE]		10	11.8	11.3
Engineer/Physicist	0	0	2	2
Technician/ Tech. Engineer	0	1	1.3	1.3
Graduate	0	1	1.5	1.5
TS/PhD	4.5	8	7	6.5
Associate	0	0	0	0
TOTAL [FTE]	8.5	15.2	16.1	15.6
Material Budget [kCHF]				
Design and prototyping	380	550	850	850
FSUs	20	30	50	50
М4Р	140	430	445	425
AOB (travel., collab	180	130	80	80
Total [kCHF]	720	1140	1425	1405

- Most of BI workpackages would need support from impedance working group and design office (MME)
- Extra staffs in 2027 for transverse and longitudinal profile monitoring
- Question on extra staff for Orbit feedback ?
- After 2026, we would also need add. Support for design and integration (MME). This would also require a new staff in BI (Tech. engineer) to follow this up
- Mainly asking for TS/Ph. D students and very few graduates.

Conclusion

- We have put in place a plan to meet the FCC FS and TDR goals
 - We would like to have the plan reviewed, possibly approved and funded
 - Some extra staffs needed in 2027 (middle of LS3)
- The most challenging tasks have been started already.
- Interaction with many working groups (integration, impedance, alignment, machine protection, EPOL and MDI)
- A structure like the one of Hilumi with workpackages and a clear interface with the project structure will be beneficial.

Thanks for your attention

S. Mazzoni- FCC - 4th October 2024

home.cern

The different tasks would actually require the support of several CERN groups, especially

- Integration team
- Design office
- Central Workshop, metrology etc...
- Controls hardware, software and communication
- Vacuum and surface technologies
- Cabling
- Energy requirements
- Alignment and Geodesy
- Support from Operation (CLEAR, SPS North Area)

