

EPC group overview on FCC

<u>Davide Aguglia</u> & Serge Pittet, SY-EPC

Outlook

WPs Scope for EPC

Technical issues & challenges

Organization & collaborations

Dependencies & expectations

Resources

Missing resources / inputs

Scope

3 Fundamental objectives

Magnet powering definition

- Determining circuits specs
- Estimating converters volumes & cost vs. their location
- Estimating efficiencies vs. mission profiles
- Defining converters families

RF powering definition

- Footprint (surface point), cost, efficiency
- Integration in klystron gallery (voltage regulators + klystron protection)

AC vs. DC energy distribution along the ring

 CAPEX+OPEX comparison to distribute energy to all points via AC or DC solutions

All this considering:

- Special attention to integration (alcoves, tunnel, surface points)
- Environmental impact
- Sustainability
- Availability
- Affordable control electronic platform/s
- FCC-ee, FCC-hh, but No Pre-injector activities launched nor estimated - no resources determined

Reverse timeline for SY/EPC systems

T₀=installation in tunnel

Magnet powering & RF auxiliary systems

Years:	T ₀ -15			T ₀ -10			T ₀ -5		T ₀ -1
R&D									
Design + prototyping									
Industrialization + pre-series									
Series prod. + testing									

Comments: xxx

RF powering (main converter) and UPFCs (SVC equivalent)

Years:	T ₀ -15			T ₀ -10			T ₀ -5		T ₀ -1
Collaboration w. industry									
production, install. & testing									

Technical issues and Challenges

Few challenges!

- Due to large number of converters managing 100's of MW, small design choices → big overall CAPEX-OPEX & CE impacts
- For magnet powering this means:
 - Finding optimal circuit configurations / layout
 - Adopting a global optimization approach to find best compromises between power converters locations, number of alcoves, etc.
 - Standardizing / creating converter families to reduce cost
 - Control electronics allowing highest operational automation at affordable cost
- For RF powering (160 MW electrical power) this means:
 - Finding a reliable, efficient, and affordable solution
 - Considering klystron faults conditions
- For AC or DC power distribution this means:
 - Comparing power distribution concepts, integrating voltage stability controls and faults ride through for the entire complex

Dependencies & expectations

Magnet powering R&D to achieve pre-design for pre-TDR

Dependencies (bi-directional)

Expectations

FCCee

- Tighter collaboration with beam optics
- (FS: hoping to receive more info on booster)
- pre-TDR: Beam optics and magnet defined 1 year before pre-TDR!
- Pre-injectors: if EPC involved for pre-TDR
 - Need additional resources
 - Beam optics and magnet defined 1 year before pre-TDR!

FCChh

 Need for magnet designs & machine cycles to estimate power converters & storage volumes

Dependencies & expectations

RF powering R&D to achieve pre-design for pre-TDR

Dependencies (bi-directional)

Expectations

FCCee

- Tighter collaboration with RF
- pre-TDR: klystron specs. defined 1,5 year before pre-TDR!

FCChh

 Lower impact, but still need some figures in 2025!

Dependencies & expectations

AC vs. DC distribution R&D to achieve pre-design for pre-TDR

Dependencies (bi-directional)

Expectations

FCCee

 Tight collaboration with EN-EL to develop design models for the AC solution (integrating UPFCs) – Ongoing!

FCChh

 Need for an Electrical load spec. for each of the FCChh points by early 2026!

Collaborations

- In contact with industrial partners for the main power converter (centralised MMC)
 - Probable collaboration with Siemens & Hitachi
- EPC delegation + Jean-Paul will be visiting a 1 GW/640 kV station in Spain this Nov.
- Collaborations with Universities
 - Tallinn University of Technology (TalTech),
 Estonia via a PhD to evaluate efficient solutions to offer voltage trimming to each klystron in FCC.
 - Polytechnic University of Valencia, Spain via Professors support on the HV DC distribution

Collaborations

Collaboration with LAPLACE lab. In Toulouse to evaluate multi purpose use of hydrogen in FCC

Energy Storage for:

- Reducing integration costs of purchased renewables MWhs
- UPS (necessary for safety systems)
- Back up diesel generators (for longer periods)
- Better integration of local renewables (i.e. solar panels on surface sites)

Enhancing heat recovery

Elevate accelerator waste heat for residential use, etc.

Absorption cooling

 Create cooling (needed for the accelerator) from heat dissipated by fuel-cells

Organization

Internal organization & reporting

Internal organization

- Manuel Colmenero (LD) Comparison between AC & DC distribution concepts & contributing in RF powering
- 2. Byamba Wicki (FELL) Circuit studies + global optimization (CAPEX-OPEX)
- Serge Pittet (IC) Deputy EPC coordinator, mainly focuses on magnet powering / circuits layouts & availability
- 4. Davide Aguglia (IC) EPC coordinator, mainly focuses on global optimization & RF powering

Resources

Integrating new resources

	Asked	Approved
Staff (2025)	2	2
Staff (2026)	1	0
Grads (2025)	1	1
PhD (2025)	2	1

- Staff 1 (2025): Magnet powering layout + CE implications for the FCCee (Booster + colllider). Preliminary studies on Sustainability and environmental impacts of magnet powering systems
- Staff 2 (2025): RF powering studies for FCC-ee (Booster + colllider) and FCC-hh. (Evaluate protection schemes +integration in klystron gallery). Preliminary studies on Sustainability and environmental impacts of RF powering systems
- Staff 3 (2026): Full study on sustainability and environmental impacts of powering systems (magnets + RF) + centralized energy storage for renewable energy integration. Global accelerator sustainability via renewables and cogeneration/cooling via hydrogen systems

Resources

Integrating new resources

	Asked	Approved
Staff (2025)	2	2
Staff (2026)	1	0
Grads (2025)	1	1
PhD (2025)	2	1

- Grads (2025)
 - Optimization scenarios evaluation (incl. sustainability, energy cost scenarios for FCC-ee);
 - Construction of the optimization tool for FCC-hh (for CE impacts in primis);
 - Models' refinements via sensitivities analyses and accuracy evaluation for FCC-ee;
 - Provides & updates tools and methods to both Staff 1 and 2 on CAPEX OPEX optim for FCC-ee & FCC-hh
- **PhD 1**: EPC (and other groups) cost models data analysis with Machine Learning to support highly non-linear cost models for the CAPEX OPEX
- PhD 2: R&D into affordable & efficient power converters control platform electronics + software

Missing resources / inputs

Pre-injectors

- Potential missing if pre-injectors studies need to be integrated
- For now no idea on resources amount needs for this item.

