

EPC - Overall optimization of magnet powering

SY-FCC workshop

Davide Aguglia, Byamba Wicki, Serge Pittet, SY-EPC

4th October 2024

Content

- Objectives
- Need for global optimization
- Today's status
- Missing items

Objectives – Powering all magnets (collider+boost.)

Our deliverables are: lacksquare

- Defining locations and volume of each power converter for CE integration \rightarrow important for pre-TDR •
- Provide a cost estimate of all power converters \rightarrow important for FS & pre-TDR era •
- To achieve this \rightarrow need defining powering needs & circular ullet

nfiguration

- "Powering needs" means: •
- II this minimizing CAPEX & OPEX Voltage & currents $\rightarrow nc$ • team (number c
 - Guarantee a minimecision" •
 - Min. availability \rightarrow Deciding level of redundancy & reliability
 - Etc. •

Sincults configuration/layout" means:

- Defining power converter's locations
- Defining max cable distance
- Deciding if magnets can be put in series or not •
- Checking if putting trim converters can be • convenient
- Etc.

Objectives – Powering all magnets (collider+boost.)

- One of the first questions we tried to answer
 - Where to place power converters? (alcoves vs. near access points vs. under beamline)
 - Why 7 alcoves / arc? Is it a "good" number?
 - What is the cables volume in the tunnel to power all magnets?

Absolute need for a global optimization approach

Addressing the question regarding converters placement or number of alcoves

Absolute need for a global optimization approach

• Changing the way we approach projects: organization by equipment groups but...

Even with accurate sub-system models, the final system is not optimised

Even with inaccurate sub-system models, the final system is much closer to an optimised solution!

Global, or system, or integrated optimisation

(methods & tools)

sub-system 2

sub-system n

sub-system 1

sub-system 3

Final system

Today's status

- We know where to place power converters
- Magnet functions probably fixed for collider?
- Global design tool exists and is heavily used
 - Gathered CAPEX&OPEX models form MSC, CV, SCE, EPC

Today's status

- Design tool used to optimize CAPEX & OPEX against several variables
- Used to perform sensitivity analyses & provide a roadmap

- Optimised for min. CAPEX & OPEX for different alcoves number
- Results very sensitive to available cable trays number...

SY

Accelerator Systems

FS status & missing items

• For the Feasibility Studies report

- Cost estimate will be updated from mid-term review powering feasible
- Recent changes on booster specs
 - More circuits: Tapering for Dipoles and Quads, correctors for Quads, skew Quads
 - Waiting for new specs of all these new circuits (maybe in Oct. 2024 more data for skew & corrector quads)
 - We recently received new specs for booster sextupoles
 - Recent change in booster cycle definition (more frequent injections \rightarrow more losses)
 - + addition of straight section magnet (we just have numbers, specs guessed by EPC), with some EPC assumptions on new magnet specs, gives additional 30 MW power consumption in booster...

SY

Pre-TDR & missing items

- Everything related to pre-injector \rightarrow no mandate or resources
- Sustainability → under resourced
- Environmental impact \rightarrow under resourced

home.cern