Leveraging ServiceX to Transform PHYSLITE
Data into Flat N-tuples with Systematics

Alexander Schmidt

How can this be done?

Encapsulate TopCPToolkit in a docker container which can be
accessed on ServiceX by anyone in ATLAS

ServiceX

Intro to ServiceX:

ServiceX, a component of the |RIS-HEP Intelligent Data Delivery Service, is an experiment-agnostic service to enable
on-demand columnar data delivery tailored for nearly interactive, high performance, array-based Pythonic analyses.
It provides a uniform backend interface to data storage services and an intuitive frontend for users to enable
columnar transformations from multiple different data formats and organizational structures.

ServiceX

Example applications on ServiceX:
- Uproot transformer (takes json as query and returns filtered flat ROOT ntuple)
- funcadl_xAOD transformer (uses C++ to extract columns of data from ATLAS
xAOD binary files)
- Python transformer (takes python script as query and runs on input files via
ServiceX)

Intro to TopCPToolkit:

PHYSLITE is a light-weight file format used to store particle collision event data. PHYSLITE files are
designed for C++ making them difficult to use in the python ecosystem. Systematic uncertainties are not
directly stored and must be calculated from these files, but there currently exists no python libraries to do
that. However, these files can be n-tupilized for compatibility with the python ecosystem. Using
TopCPToolkit, these files can be filtered and n-tupilized according to user specifications. Additionally,
TopCPToolkit can calculate systematic uncertainties from these files - information that would otherwise be
inaccessible once n-tupelized. TopCPToolkit, is a powerful tool, but it can be cumbersome to set up. By
making a TopCPToolkit transformer for ServiceX, we can capture the full analysis power of TopCPToolkit
while skipping the many steps needed to set it up and access potentially more computing resources than
locally available.

o — e — @

How TopCPToolkit is normally used:

base) acs5635@topl:[~]: runTop el.py -i input.txt -o output -t customConfigAlex --no-systematics -e 14|

Run the event loop /
Name of the output
file which will be in

root format

A list of other options
(e.g number of events)

List of PHYSLITE

files. Can be Folder with one or more
gddresses ofthe yaml files that specify what
files on the information we want from

internet these files

CommonServices:
systematicsHistogram: 'listofSystematics’

PileupReweighting: {}

EventCleaning:
runEventCleaning: True

Jets:

- containerName: 'Analets’
jetCollection: 'AntiKt4EMPFlowJets'
runJvtUpdate: False
runNNJvtUpdate: True
runGhostMuonAssociation: True
systematicsModelJES: 'Category’
systematicsModelJER: 'Full®
wvt: {}

PteEtaSelection:
minPt: 25000.0
maxeEta: 2.5

FlavourTagging:

- btagger: 'DLidve1’
btagWP: 'FixedCutBEff 85'
generator: 'autoconfig’

- btagger: 'DLidve1’
btagWP: 'FixedCutBEff 77’
generator: 'autoconfig’

- btagger: 'DL1dve1l’
btagWP: 'FixedCutBEff 70’
generator: 'autoconfig'’

- btagger: 'DL1dve1l’
btagWP: 'FixedCutBEff 60"
generator: 'autoconfig’

- btagger: 'DLidve1l’
btagwP: 'Continuous’
generator: 'autoconfig’

BTaggingScores:

Electrons:

- containerName: 'AnaElectrons’
crackveto: True
IFFClassification: {}
WorkingPoint:

- selectionName: ‘loose’
likelihoodwP: ‘TightLH'
isolationWP: ‘NonIso’

- selectionName: 'tight’
likelihoodwP: 'TightLH'
isolationwP: 'Tight VarRad'

PtEtaSelection:
minPt: 25000.0
maxEta: 2.47

Muons :

- containerName: 'AnaMuons’
IFFClassification: {}
WorkingPoint:

- selectionName: ‘loose’
quality: "Medium’
isolation: 'NonIso’

- selectionName: ‘tight’
quality: 'Medium’
isolation: 'Tight varRad'
systematicBreakdown: True

PtEtaSelection:
minPt: 25000.0
maxEta: 2.5

GeneratorLevelAnalysis: {}

FROM python:3.10

RUN useradd -ms /bin/bash servicex
RUN apt-get update && apt-get install -y netcat-traditional && rm -rf /var/lib/apt/lists/*

Intro to
WORKDIR /home/servicex
DOCker' RUN mkdir ./servicex

ENV POETRY_VERSION=1.2.2
RUN pip install poetry==$POETRY VERSION

COPY pyproject.toml pyproject.toml
COPY poetry.lock poetry.lock

RUN poetry config virtualenvs.create false && \
poetry install --no-root --no-interaction --no-ansi

RUN pip install gunicorn

COPY boot.sh ./

COPY transformer capabilities.json ./
COPY servicex/ ./servicex

RUN chmod +x boot.sh

USER servicex
COPY app.conf .

ENV CODEGEN CONFIG _FILE "/home/servicex/app.conf"

EXPOSE 5000
ENTRYPOINT ["./boot.sh"]

Built from images we are writing

Container

bind Input/output/

mount configfiles
files

tmpfs
mount

volume

=3

- TopCPToolkit

G Filesystem

' Docker area

=& ServiceX

TRANSLATE FUNC_ADL GENERATE CODE

LOOKUP FILES TRANSFORM FILES

Translate func_adl or Translate qastle DID Finder submits Transformer pods
other event selection statements into C++ or requests to l?lfl‘cl‘_o to aut?scale upto TRANSEORMED FILES
syntax into qastle python code. find file replicas. rapidly process files.

Result is mounted into |NSOHSTESUlIS B MOsE Results written to

transformer pods efficient replica to object store
attempt to access first

Send in Need a second Look for TopCPToolkit

yaml| docker image specific image called

query file called “codegen” PHYSLITE “science”
image files image

\\V4

I

ServiceX

Client ServiceX server

SER

Docker dcker

Send yaml file
+ physlite URL

TopCPToolkit TopCPToolkit
codegen — science

image image

Download
file or file
URL

ROOT ntuple
w/ systematics

How TopCP will work over ServiceX (in pseudocode):

[1
‘Name’: "TopCPExample”,
‘Dataset’: d.Rucio('my.rucio.dataset’),
‘Query’: g.TopCPToolkit(conffile="your analysis.yaml’)

Completed so far:

- science image is completed

- codegen image is completed

- X509 proxy image (sets up X509 certificate much more easily)

- ServiceX test harness (which makes testing/developing new transformers easier)

What’s left:

- Make sure science and codegen image communicate properly
- Put finished product on ServiceX server
- Write an example client script to make application easier to use

Questions?

