
Improving latency and scalability of 
the user runtime job log collecting 

and exposure in REANA
IRIS-HEP project (link)

Jelizaveta Lemeševa (Vilnius University)
Mentor: Dr. Tibor Šimko (CERN)

https://iris-hep.org/fellows/jlemesh.html


REANA reproducible analysis platform

https://docs.reana.io/

REANA is a REproducible ANAlysis platform, 
created for the purpose of reusing and 
reinterpreting of research data analyses.

The researcher writes his data analysis workflow 
and submits their analysis pipelines to REANA 
cluster.

REANA cluster schedules the workflow execution 
on a computing backend, monitors it, persists the 
results, and displays them to the user.

REANA keeps track of all workflow runs, assisting 
in the organisation of analysis development.

https://docs.reana.io/


Workflow YAML definition

- The type of the workflow engine: CWL, Serial, Snakemake 
or Yadage

- One or multiple steps, which can run sequentially or in 
parallel

- An environments in which to run the code (Docker images)
- The command to execute in each step
- Additional files: scripts with code, data input and output files
- Custom parameters
- Resource limits for computations (memory)
- etc.

Workflows are defined in YAML files, where it 
is possible to specify:



REANA Web UI and CLI

After the workflow submission, the researcher can go 
to REANA Web UI and inspect workflow execution 
progress (or alternatively use reana-client CLI 
tool).

Workflow and job status is reported in real time, but 
workflow and job logs can only be inspected after 
execution of each concrete step.

REANA cluster is notified of workflow execution 
completion by compute backend, and retrieves the 
logs of the completed job.

This works well for short-running jobs, but some jobs 
can run for hours and even days, and the user has no 
feedback of whether the code is executing correctly.



Project goal

The goal is to enhance the REANA workflow and job logging system with a possibility to capture logs of executing 
processes “live”.

Considerations:

● Introduce least complexity
● Compatible with Dask on Kubernetes
● Works for both workflow and job logs
● Evaluate reliability and scalability



Log collection alternatives

There are three common alternatives for log collection in Kubernetes: 

1. DaemonSet
2. Sidecar
3. Kubernetes API.

Additionally there are multiple log storage options and logging agent options.

The alternatives can be improved further by adding live log result caching to decrease the load on 
underlying systems in case of numerous user queries, or by redesigning REST API to retrieve only one 
log at a time instead of logs for the workflow and all its jobs.

Prototypes for various combinations of setups with different storage and logging agents can be found in 
jlemesh/reana-demo-logs and REANA forks in jlemesh namespace.

https://github.com/jlemesh/reana-demo-logs
https://github.com/jlemesh


Alternative 1: DaemonSet

A DaemonSet is a set of pods, where at least 
one pod runs on each Kubernetes node.

A log collection agent collects logs from 
Kubernetes host container log files and pushes 
the data to a storage.

This is the most common technique used for 
logs collection in Kubernetes.



Alternative 2: Sidecar

A sidecar is a container in a pod that runs alongside some 
other (main) container and shares network and filesystem 
resources with it.

Container process writes logs to a file (not stdout as in 
DaemonSet case) and each pod has a sidecar container 
that runs a log collection agent process, which reads logs 
from that file and pushes them to a storage.



Alternative 3: Kubernetes API

The Kubernetes API server is a front-end to 
Kubernetes system, and exposes REST HTTP API.

It is possible to collect logs directly from Kubernetes 
API by making a request to logs endpoint. The logs 
for the pod are available only while the pod is 
running, and disappear afterwards, hence should be 
collected by custom service and pushed to 
permanent storage.

This is a simplest solution, but risks impacting whole 
cluster in case the load on Kubernetes API gets too 
big.

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#get-read-log-of-the-specified-pod


Storage alternatives

PostgreSQL is current REANA database, hence would not 
require to introduce additional components.

Elasticsearch is a go to option for logs storage.

OpenSearch is an open source fork of Elasticsearch. It is 
a bit less popular than Elasticsearch, but is recommended 
at CERN due to its open source licensing.

OpenSearch selected for further tests with DaemonSet 
and Sidecar setups, and PostgreSQL for Kubernetes API 
option.



Logging agent alternatives

Fluentd is currently used at CERN to collect logs for 
Kubernetes clusters, but is slow and there are plans to 
deprecate it in favor of FluentBit, which is more 
efficient. 

Logstash is commonly used together with 
Elasticsearch.

Vector is another popular choice, though has complex 
configuration and incomplete documentation.

FluentBit was selected for further tests with 
DaemonSet and Sidecar setups.



Log retrieval benchmarking
REANA-TEST Kubernetes cluster was created with 43 nodes (each having 8 VCPU cores and 16 GB of RAM).

We have run benchmarks with 60 parallel workflows, each with 50 parallel steps - 3000 parallel jobs, each job emitting 1000 
lines of logs.

Benchmarking flow:

- 60 workflows are submitted to REANA
- the script waits until the pod count in the cluster reaches threshold (60 x 50 = 3000 pods)
- a warmup benchmark is started, which usually returns the slowest results
- actual benchmarks follow (with 1, 2, 5 and 10 requests per second), each lasting 60 seconds, whilst the 3000 jobs 

are still running

Tool used for benchmarking: tsenart/vegeta.

Benchmarking script and results can be found in jlemesh/reana-demo-logs repository.

https://github.com/tsenart/vegeta
https://github.com/jlemesh/reana-demo-logs/tree/main/benchmarks


Benchmarking results (1 and 2 requests per second)
1 rps (ms) 2 rps (ms)

Mean p50 p95 Mean p50 p95

DaemonSet 1132 1096 1360 1349 1332 1640

Sidecar 1054 1053 1209 1191 1172 1375

Kubernetes API 1823 1838 1905 1929 1927 2009

DaemonSet cached 490 145 1219 371 130 1374

Sidecar cached 493 144 1370 368 141 1252

Kubernetes API cached 720 155 1888 501 129 1997

DaemonSet optimized 72 69 133 66 65 89

Sidecar optimized 74 68 127 66 64 89

Kubernetes API optimized 74 68 112 66 64 92

Fastest 
“plain” 
setup

Slowest 
“plain” 
setup

Caching 
improves 
p50, but 
not p95



Benchmarking results (5 and 10 requests per second)
5 rps (ms) 10 rps (ms)

Mean p50 p95 Mean p50 p95

DaemonSet 2299 1994 3485 21738 27124 30001

Sidecar 1962 1845 2692 17418 17117 30001

Kubernetes API 2457 2303 3207 18411 19062 30001

DaemonSet cached 314 130 1546 425 138 1870

Sidecar cached 316 132 1557 382 141 1580

Kubernetes API cached 441 132 2079 515 137 2355

DaemonSet optimized 55 55 77 55 53 75

Sidecar optimized 55 54 78 58 53 77

Kubernetes API optimized 55 55 85 54 53 79

Requests 
start timing 
out at some 
point

With caching 
and 
optimization all 
setups perform 
nearly equally 
well for 1 to 10 
rps



Reliability tests
Tested in a cluster with 3 worker nodes (+1 control plane node).

DaemonSet seems to store logs in a most reliable way. In all 
tested cases except workflow node crash the system collected 
either job or workflow logs that contain warning/error 
messages.

Sidecar is the least reliable in terms of logs storage. In multiple 
cases warnings/errors logs were not collected at all. This is due 
to FluentBit container being in the same pod as workflow/job, so 
if the pod crashes, FluentBit is also not working.

The Kubernetes API way of live log retrieval is also quite reliable 
and collects errors/warnings for the same test cases as 
DaemonSet, but there is one case when job logs are lost 
altogether - when workflow node crashes. In this case workflow 
does not live as long as job pod and has no opportunity to 
persist job logs in the database.



Reliability tests results

Test name
DaemonSet Sidecar Kubernetes API

Job log Workflow log Job log Workflow log Job log Workflow log

Job eviction - + - + + -

Workflow eviction - + - - - +

Job OOM - + - + + -

Job exception + + + + + -

Job node crash - + - + + -

Workflow node crash - - - - — -

Job node drain - + - + + -

Workflow node drain - + - - - +

Job node pressure eviction - + - + + -

Missing 
errors in 
logs

Job logs 
completely 
lost

The 
most 
reliable



Solution implementation

- Helm chart
- REANA cluster components:

- reana-job-controller
- reana-workflow-controller

- REANA clients:
- reana-client (Python)
- reana-client (Go)

- Documentation

https://github.com/reanahub/reana/pull/827
https://github.com/reanahub/reana-job-controller/pull/468
https://github.com/reanahub/reana-workflow-controller/pull/602
https://github.com/reanahub/reana-client/pull/731
https://github.com/reanahub/reana-client-go/pull/161
https://github.com/reanahub/docs.reana.io/pull/209


Solution implementation



Thank you!


