
Develop of Clad Tutorials for 
CMS/HEP

Austėja Jurgaitytė
Mentor: David Lange



Automatic differentiation (AD)

● A collection of methods used to compute derivatives of functions programmatically.
● Calculates the derivatives of functions precisely (up to the limits of numerical 

precision).
● Uses the chain rule and intermediate variables calculated using elementary 

arithmetic operations and elementary functions found in every computer 
calculation. [1]

[1]



Types of AD

[2]



Clad

Clad is a plugin for Clang compiler that enables automatic differentiation for for 
C++. When provided with a C++ function, Clad automatically generates code 
that computes the derivatives of that function.[3]

[3]



Project goals

● Creating a Clad based demonstration of finding the 
best fit helix parameters given a set of data points.

● Contribute to Clad code fixing the missing 
functionalities that we find along the way.

[4]



Simple function to 
describe a point on the 

helix

Function that 
generates points for a 

helix with noise

Calculation of 
distance from a helix 

to a point

Finding helix parameters with 
the Levenberg-Marquardt 

algorithm

Graph, showing the 
fitted spiral

The plan for the main tutorial



Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm combines two optimization methods: 
gradient descent and Gauss-Newton. 

Its behaviour changes based on how close the current coefficients are to 
the optimal value.

The equation that dictates how to update the parameters in the 
Levenberg-Marquardt algorithm is this:

(JTWJ + λI) hlm = JT W (y - ŷ)[5]



Distance to point calculations

● To find the closest distance of a point to a helix, we do some scaling 
so that our helix is now defined by (cos𝑡,sin𝑡,ℎ𝑡).

● For a given point 𝑃(i,j,k), let 𝑄 be the closest point on the helix. The 
line segment connecting 𝑃 and 𝑄 must be perpendicular to the helix's 
tangent line at 𝑄, which is just (−sin𝑡,cos𝑡,ℎ):

−(cos𝑡−i)sin𝑡+(sin𝑡−j)cos𝑡+(ℎ𝑡−k)ℎ=0

● This simplifies to 𝐴sin(𝑡+𝐵)+𝐶𝑡+𝐷=0 for some constants 𝐴,𝐵,𝐶,𝐷.[6]

● To find the solution, I perform a binary search.



Graphs



Gradient Descent

● Perhaps a better way to showcase Clad as it is more simple (but not 
necessarily a better way to approximate a helix)

● the implementation found in fitter.h gets stuck in a local minimum 
that is very far off from the actual expected results.



What I learned

● I gained knowledge about automatic differentiation and Clad.
● Learned more about C++.
● Refreshed my knowledge about various fitting methods.
● Got experience working with a new mentor.
● Got a taste of what it’s like to work with a team.



References
[1] Automatic Differentiation Wikipedia page, [https://en.wikipedia.org/wiki/Automatic_differentiation]

[2] „What is Automatic Differentiation?“, [https://www.youtube.com/watch?v=wG_nF1awSSY]

[3] Clad GitHub, [https://github.com/vgvassilev/clad]

[4] Helix Wikipedia page, [https://en.wikipedia.org/wiki/Helix]

[5] The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems, 
https://people.duke.edu/~hpgavin/lm.pdf

[6] Shortest distance between a point and a helix, 
[https://math.stackexchange.com/questions/13341/shortest-distance-between-a-point-and-a-helix]

Project GitHub [https://github.com/compiler-research/helix-example]

https://en.wikipedia.org/wiki/Automatic_differentiation
https://www.youtube.com/watch?v=wG_nF1awSSY
https://github.com/vgvassilev/clad
https://en.wikipedia.org/wiki/Helix
https://people.duke.edu/~hpgavin/lm.pdf
https://math.stackexchange.com/questions/13341/shortest-distance-between-a-point-and-a-helix
https://github.com/compiler-research/helix-example

