Develop of Clad Tutorials for
CMS/HEP

Austéja Jurgaityté
Mentor: David Lange

Automatic differentiation (AD)

A collection of methods used to compute derivatives of functions programmatically.
Calculates the derivatives of functions precisely (up to the limits of numerical
precision).

Uses the chain rule and intermediate variables calculated using elementary

arithmetic operations and elementary functions found in every computer
calculation. [1]

dy dydu

dez du dz
[1]

Types of AD

fx, %) = [sm()+——e"2] X [——e"?]

Forward pass Reverse Pass

[—

x v_y/v sin (v;) v+,

—_— Vl —_— vl —_— v2 —_— VS

\Vs X Vg
Ve —fa,x)
exp vo "= Vz
L

" Vs

[2]

Clad

Clad is a plugin for Clang compiler that enables automatic differentiation for for
C++. When provided with a C++ function, Clad automatically generates code
that computes the derivatives of that function.®!

Clad,

Project goals

Creating a Clad based demonstration of finding the
best fit helix parameters given a set of data points.
Contribute to Clad code fixing the missing
functionalities that we find along the way.

The plan for the main tutorial

Simple function to Calculation of
describe a point on the distance from a helix
helix to a point

ED NI

Function that Finding helix parameters with

generates points for a the Levenberg-Marquardt
helix with noise algorithm

Graph, showing the
fitted spiral

Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm combines two optimization methods:
gradient descent and Gauss-Newton.

Its behaviour changes based on how close the current coefficients are to
the optimal value.

The equation that dictates how to update the parameters in the
Levenberg-Marquardt algorithm is this:

WWJ+A)h,_=JTW (y-§)P
Im

Distance to point calculations

To find the closest distance of a point to a helix, we do some scaling
so that our helix is now defined by (cosz,sinz,hi).

For a given point P(i,j,k), let O be the closest point on the helix. The
line segment connecting P and Q must be perpendicular to the helix's
tangent line at Q, which is just (-sinz,cosz,h):

~(cost-i)sinz+(sint=j)cost+(ht-k)h=0

This simplifies to Asin(r+B)+Cr+D=0 for some constants A,B,C,D.!°!
To find the solution, | perform a binary search.

Gradient Descent

Perhaps a better way to showcase Clad as it is more simple (but not

necessarily a better way to approximate a helix)
the implementation found in fitter.h gets stuck in a local minimum

that is very far off from the actual expected results.

What | learned

| gained knowledge about automatic differentiation and Clad.
Learned more about C++.

Refreshed my knowledge about various fitting methods.

Got experience working with a new mentor.

Got a taste of what it's like to work with a team.

References

[1] Automatic Differentiation Wikipedia page, [

[2] ,What is Automatic Differentiation?”, [

[3] Clad GitHub, []

[4] Helix Wikipedia page, []

[5] The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems,

[6] Shortest distance between a point and a helix,

[

Project GitHub |]

https://en.wikipedia.org/wiki/Automatic_differentiation
https://www.youtube.com/watch?v=wG_nF1awSSY
https://github.com/vgvassilev/clad
https://en.wikipedia.org/wiki/Helix
https://people.duke.edu/~hpgavin/lm.pdf
https://math.stackexchange.com/questions/13341/shortest-distance-between-a-point-and-a-helix
https://github.com/compiler-research/helix-example

