
“Usage of CUDA for improving HLT performance”
participant: Belytskyi Dmytro

Mentor: Andrii Usachov

So there we should attempt to expand of the Standard Model (SM), ensuring its alignment with observable data on
cosmological scales

 Prerequisites

Chain of thoughts

● The perspective place for search for possible candidates is the range of long lived particles.
● If “dark” particle is long-lived it should leave exotic trace at low level data.
● Thus the goal to search low-level data for anomalies

The general idea, how to detect anomalies, is simple : we will train autoencoder to
reconstruct the background noise data.

Expectation is so that autoencoder will struggle to reconstruct the data with mixed
in anomalies signal. Which appears in loss score

detecting anomalies in LHCb data with autoencoder.

Two samples where generated with gauss.

One is large one - background noise
And the other test sample - the one with mixed in higgs boson decay signal

The generated data stored into .xgen file format and further relevant parameters
retrieved with Davinci

● Data consist from events

● Each event contain vertices(primary,secondary)

● Each vertices could be described by number of tracks, their angle,
cartesian coordinates.

Data generation

So such cats were introduced to initial data vertices:

● cut by Velo detector geometry

-400<Z<800
X^2+Y^2<40^2
*all distances in mm

● Filter vertices which are related to interactions with detector meter

● Cut by number of tracks
num_tracks>=3

Then all vertices in each event were sorted by num_tracks parameter in
descending order.

Vertices caused by interaction with detector

Data filtering

The data shape was chosen from initial analysis.

Each event is described by the vector of length 12 of float32 (basically flattened
array of 6 1x2 vectors num_tracks+distance from origine)

Data points distribution

Autoencoder structure

Autoencoder and data structure

Autoencoder consist form 5 fully connected layers 8 - 4 -3 - 4 -8

training

I use keras with tensorflow backend and pytorch frameworks

As net has quite small size it is reasonable to train it on CPU,

Attempts to train of GPU were made and as a conclusion loading sparse
random (which is totally valid description of training dataset) data in and out
GPU memory from RAM prove to be a bottleneck.

So I train encoder for 100 epochs with batch size of 512 and MSE loss

Finally i do inference on the sample from train data which does not take part
in train and test data which contain higgs boson decay signal

