

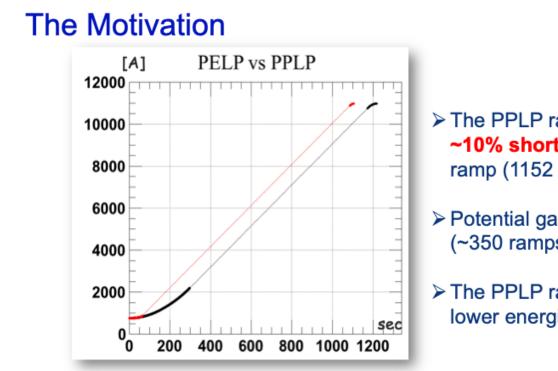
www.cern.ch

LHC-OP MD requests for MD#4 and MD#5

Tuesday 3rd September 2024

M. Hostettler, M. Solfaroli, J. Wanczyk

Thanks to: L. Giacomel, K. Paraschou, N. Mounet, B. Salvant, M. Schenk, I. Mases Sole


OP request for 3 MDs:

- #11789: PPLP ramp operational development
- **#13403**: Smooth ramp for 2025
- **#13523**: Improving LHC intensity dependent corrections

Possibility to combine them

#11789: PPLP ramp – operational development

LSWG - 09.07.2024

The PPLP ramp to 6.8 TeV is ~10% shorter than the PELP ramp (1152 sec vs 1275 sec)

Potential gain = 10 hours/year (~350 ramps/year)

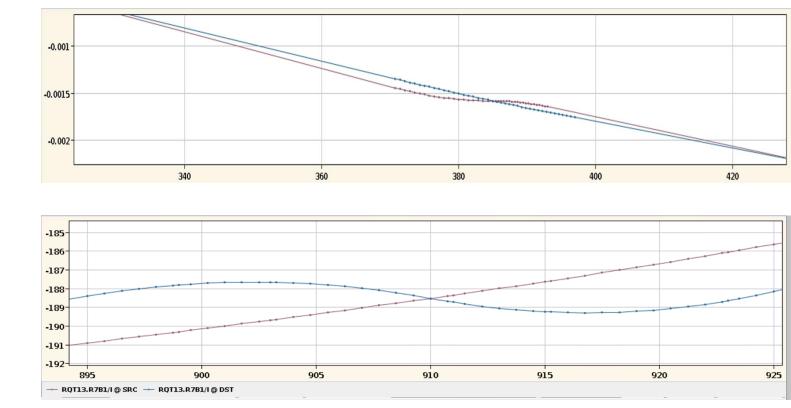
The PPLP ramp allows to reach lower energies

2

Already presented at LSWG on July 9th:

https://indico.cern.ch/event/14345 56/contributions/6036361/attachm ents/2892987/5072116/MD11789. pdf

Instead of combining with MD10343, we propose to **combine with MD13403** (next slide)

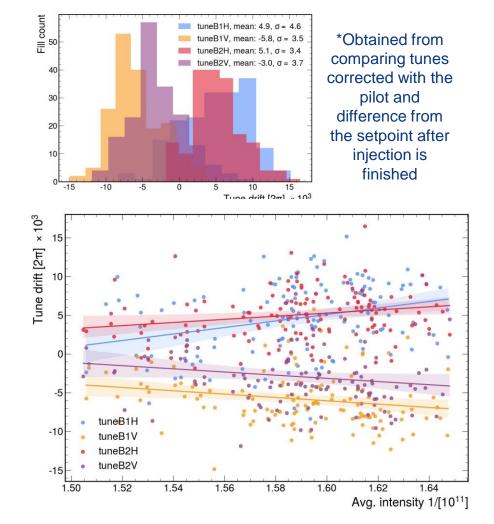


#13403: Smooth ramp for 2025

HL ramp - RQT13.R7B1 example:

- K_SMOOTH
- I_REF

- Operational development for 2025
- The quadrupole rounding feature was designed for the squeeze, in order to allow the possibility to stop at matched points
- Stopping the CRS was never an option and it's not requested
- Removing this feature will allow a smoother current transition from the quadrupoles:
 - Reduced current stress
 - Improves corrections
 - Reduced time
- Feasibility test already done during HL-LHC MD


#11789㑛 - requirements

- We want to:
 - check longitudinal blow-up control across the PPLP ramp, with particular attention at the very first part of the momentum change - aim to deploy it in operation
 - Check the quality and reproducibility of the correction in the smoothed ramp
- About 4 ramps with INDIVs up to 1.6e11 p/b and nominal COLL settings
 - Ramp will be designed with same optics distribution (only difference is momentum function)
 - Modifying longitudinal blow-up settings (as done in standard operation)
 - Corrections feed-forward
- Nothing different from what done in a **standard commissioning**

#13523: Improving LHC intensity dependent corrections

- 2024 data: a notable tune error (~ 5e-3) is detected post corrections at injection of high intensity beams
- Much smaller drifts observed in the beginning of the year before the intensity ramp-up
- Not corrected tune drifts correlate with avg. bunch intensity
- FiDeL tune decay and Laslett are not easy to **decouple**
- Observed tune shift differences within the full beam, bunch-by-bunch
- Enhanced corrections would allow to reduce the overhead on the feedback
- Investigate the intensity and bunch-by-bunch differences
- Significant MD important for operational efficiency

#13523: Improving LHC intensity dependent corrections

- Profit from the 8b4e variant to minimize the ecloud tune shifts
- Injecting batches individually into a single beam to remove BBLR contributions
- Maximize tune shifts with high intensity and as full orbit as possible
- Measuring tune shifts with ADT single-turn kicks at each stage of injection
- Gated tune measurements for each bunch, aiming to assess Laslett coefficient accuracy and tune shift variations within the full train
- Repeat for both beams and varied intensity levels, starting from the highest

Specie	Protons
Beam Phase	Injection
Number of Bunches in LHC	as many as possible given the intensity
Beam Parameters	Bunch Train
Non- Standard Parameters	Multiple injections at different intensities: 1.6e11, 2e11, 2.3e11 (almost 400b)
Filling Scheme	Nominal filling scheme 2x72 + 3x36 25ns_2352b_2340_2004_2133_108bpi_24 inj

- Additionally measure single bunch intensity dependence (if possible – on the verge of sensitivity 1e-5)
- Repeat measurements at various stages of FiDeL decay correction

