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Why do we need granular calorimeters?

Physics reach will include SM & Higgs, with
searches for BSM including reactions initiated by
Vector Boson Fusion (VBF) and including

highl
High

y-boosted objects.

-precision timing of particles mitigate

the effects of pileup.

Particle Flow approach relies on high-precision

tracki

ng and finely segmented calorimeters for

effec

‘[ve reconstruction.
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Can they also be usetul for other purposes?

Particle Identification

CMS Phase-2 PbPb (5.5 TeV)
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https://cds.cern.ch/record/2667167/files/CMS-TDR-020.pdf

Combination of granular calorimeters and ML

Calorimetric Measurement of Multi-TeV Muons via Deep Regression

The use of granular calorimeters provides

. . . . —— Calorimeter
information not only on the intensity of the Pl — Tedker
energy released in the calorimeter, but also on
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https://arxiv.org/abs/2107.02119

From the Simulation
Highly Segmented Calorimeter

Calorimeter composed of 1M cells, where Material: PoWO.

each cell is defined by three parameters:  Segmentation: 100x100x100 cells
Cell size: 3x3x12 mm?3

position, total energy deposited, and a N

characteristic time. p,nt Kt
E=100 GeV AN
The characteristic time of each cell is : R
defined as the weighted average of the Y
Interaction times. ITZ
§ 5.92 A,
R 2L B X2k
tcell — —
Z Ei Ecell
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From the simulation

Observable and Latent Spaces

The output of the simulation represents the collection of all the steps t

inside t
saved,

e CO

orimeter. For each of them, information belonging to the o

out also information that is unknown in a real experiment.

o Tevent id Step selection rules:
o Tinteractions_ in_event: numlber of entries deltaE > 100 keV

o Tpdg: particle id (from particle data group) edep > TkeV

o Track: track id

o Tparent_ id: parent track id

o [mom: post Step momentum

o Tedep: Total Energy Deposit

o Tdeltae: post Step Kinetic energy - pre Step Kinetic energy

o [cu
o [ce

o Tglob t: post Step global time

nlet idx: cubelet index within the whole calorimeter (O to 999)

|_idx: cell index within a specific cubelet (O to 999)

nat deposited energy

nservable space is

5 /17



Project Setup

From Simulation to Physical Information + ML

From the simulation, it is possible to extract a set of global and local variables describing
the showers within the calorimeter.

For each event, 50 features are generated and used as input to a machine learning
model (DNN or BDTs) to classifty the primary particle.

INPUT FEATURE EXTRACTION CLASSIFICATION OUTPUT
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High Level Features

—— — -
— = = =

» Spatial distribution of energy
deposits : radius, length, peak
DOoSsItioNs...

Released energy magnitude :
total energy, total energy close to
the primary vertex...

Characteristic shower times :

vertex time, average event time...

— a2 - — - - —_

- - ——
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Primary vertex identification

[ntroduction
The primary vertex is defined as the
6\ l / ooint where track 1 stops

(momentum = 0)

How can we locate it?

In a real experiment we do not have ‘,

access to the momentum of the -
oarticle inside the calorimeter.

The primary vertex can be
identified by an energy
neak.
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Primary vertex identification
How the algorithm works 1/2

The algorithm is based on a moving 3D filter with a tuneable size.
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Primary vertex identification
How the algorithm works 2/2

Given the series of energies from the moving filter step, the z layer corresponding to the
orimary vertex is the first time when a certain threshold is crossed.

Moving Window Output
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Primary vertex identification

Performance
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Primary vertex identification

Feature Distributions for Protons, Pions and Kaons.

Histogram of Z vertex with Class distributions
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Shower Radius

Another Example from the Features Table

Histogram of radius with Class distributions
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11ming Features

Towards a reliable experimental approach

Propagation time of the particle through the 3 m long t
ocated just

calorimeter: It is measured by a timing layer
finite resolution (atTL = 40 ps).

‘acker before reaching the

pefore the calorimeter and it has a

Finite resolution of the calorimeter’s readout (6°9/° = 40 ps): This

s also taken into account using a smearing procedure to reflect the
imitations of the electronics.
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11ming Features

VertexIime

Histogram of VertexTime with Class distributions
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Results for proton-pion classification
XGBoost with 100x100x100

Without time-of-flight -> 61.1% accuracy With time-of-flight -> /6.7% accuracy
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What's next?

Studies on how cell size affects
particle identification

Analysis of behaviour at

different energy levels

I _ . . 1

Combination of DNNs (or BDTs)
with CNNs in order to exploit the
3D shower pattern

1
i Exploit dual-readout technique in order |

I to compare different hadrons depending ||
on their electromagnetic fraction |
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‘ Study the power of identification
in the case of proton-kaons and |
ion-k *
Pion-k R 17 /17
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