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Why do we need granular calorimeters?

Physics reach will include SM & Higgs, with 
searches for BSM including reactions initiated by 
Vector Boson Fusion (VBF) and including 
highly-boosted objects.


High-precision timing of particles mitigate 
the effects of pileup.


Particle Flow approach relies on high-precision 
tracking and finely segmented calorimeters for 
effective reconstruction.
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Particle Identification

Can they also be useful for other purposes?

Hadronic shower studies rely on high-purity data, 
but particle discrimination is difficult due to mixed test 
beams and limited calorimeter setups.


Fine segmentation offers observables for calorimeter-
based particle identification.


MTD layers enable particle identification by 
measuring time-of-flight differences, but their 
discrimination power decreases with 1/β, thus 
requiring additional methods for high-energy particle 
identification.

2 / 17A MIP Timing Detector for the CMS Phase-2 Upgrade (2019) : CERN-LHCC-2019-003

https://cds.cern.ch/record/2667167/files/CMS-TDR-020.pdf


Calorimetric Measurement of Multi-TeV Muons via Deep Regression 

Combination of granular calorimeters and ML

The use of granular calorimeters provides 
information not only on the intensity of the 
energy released in the calorimeter, but also on 
the pattern of energy deposits detected in 
the calorimeter cells. 


It has been shown that combining momentum 
measurements from the tracker with signals 
from the calorimeter significantly enhances 
the relative resolution of Multi-TeV muon 
energy.

3 / 17Jan Kieseler et al., Calorimetric Measurement of Multi-TeV Muons via Deep Regression (2022) : arXiv:2107.02119


https://arxiv.org/abs/2107.02119


Highly Segmented Calorimeter

From the Simulation

Calorimeter composed of 1M cells, where 
each cell is defined by three parameters: 
position, total energy deposited, and a 
characteristic time.


The characteristic time of each cell is 
defined as the weighted average of the 
interaction times.

̂tcell =
∑i ti ⋅ Ei

∑ Ei
=

∑i ti ⋅ Ei

Ecell
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Observable and Latent Spaces

From the simulation

The output of the simulation represents the collection of all the steps that deposited energy 
inside the calorimeter. For each of them, information belonging to the observable space is 
saved, but also information that is unknown in a real experiment.

Tevent_id

Tinteractions_in_event: number of entries

Tpdg: particle id (from particle data group)

Track: track id

Tparent_id: parent track id

Tmom: post Step momentum

Tedep: Total Energy Deposit 

Tdeltae: post Step Kinetic energy - pre Step Kinetic energy

Tglob_t: post Step global time

Tcublet_idx: cubelet index within the whole calorimeter (0 to 999)

Tcell_idx: cell index within a specific cubelet (0 to 999)

Step selection rules: 
deltaE > 100 keV 

edep > 1 keV
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From Simulation to Physical Information + ML

Project Setup

From the simulation, it is possible to extract a set of global and local variables describing 
the showers within the calorimeter.


For each event, 50 features are generated and used as input to a machine learning 
model (DNN or BDTs) to classify the primary particle.
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High Level Features
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Spatial distribution of energy 
deposits : radius, length, peak 

positions…

Characteristic shower times : 
vertex time, average event time…

Released energy magnitude : 
total energy, total energy close to 

the primary vertex…



Introduction

Primary vertex identification
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The primary vertex can be 
identified by an energy 

peak.

The primary vertex is defined as the 
point where track 1 stops 

(momentum = 0)

In a real experiment we do not have 
access to the momentum of the 
particle inside the calorimeter.

How can we locate it?



How the algorithm works 1/2

The algorithm is based on a moving 3D filter with a tuneable size.


Assuming the beam impact position is known, I sum all the energy deposits of the cell around 
this point (within a certain user-defined window). The moving filter works on the z-axis, so I 
move the z cursor along the entire calorimeter and I collect a series of values that can be 
analysed.

Primary vertex identification
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How the algorithm works 2/2

Given the series of energies from the moving filter step, the z layer corresponding to the 
primary vertex is the first time when a certain threshold is crossed.

Primary vertex identification
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Performance

Primary vertex identification
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Using a segmentation of 100x100x100, 
a perfect accuracy of 85% can be 
achieved, while if we consider a 
difference less than or equal to 1, we 
reach 94%.

Δ [cell index]

Accuracyn =
number of events with Δ < n

total number of events

C
ou

nt
s



Feature Distributions for Protons, Pions and Kaons.

The pion distribution shows a difference 
compared to the other two particles in 
the region where  is close to 0.Zvertex
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 [cell index]Zvertex
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Primary vertex identification



Another Example from the Features Table

R =
∑ riei

∑ ei
ri = (xi − xc)2 + (yi + yc)2

radius [cell index]
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Shower Radius
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Towards a reliable experimental approach

Timing Features
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Propagation time of the particle through the 3 m long tracker before reaching the 
calorimeter: It is measured by a timing layer located just before the calorimeter and it has a 
finite resolution ( ).σTL

t = 40 ps

Finite resolution of the calorimeter’s readout ( ): This 
is also taken into account using a smearing procedure to reflect the 
limitations of the electronics.

σcalo
t = 40 ps



VertexTime

Timing Features
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VertexTime [ps]
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VertexTime is defined as the 
characteristic time of the cell which the 
primary vertex has been assigned to.


The pion distribution shows a difference 
with respect to protons and kaons.
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Results for proton-pion classification
XGBoost with 100x100x100

Without time-of-flight -> 61.1% accuracy With time-of-flight -> 76.7% accuracy



What’s next?
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Studies on how cell size affects 
particle identification 

performance (already in progress)

Analysis of behaviour at 
different energy levels

Combination of DNNs (or BDTs) 
with CNNs in order to exploit the 

3D shower pattern

Exploit dual-readout technique in order 
to compare different hadrons depending 

on their electromagnetic fraction

Study the power of identification 
in the case of proton-kaons and 

pion-kaons


