

Dual-Readout Calorimeter Test-Beam experience at CERN

DRD6 Collaboration Meeting October 31, 2024

Seoyun Jang (Yonsei University)

On behalf of the Korea Dual-Readout Calorimeter Team

Introduction Korea DRC Test-Beam Experiments

• The dual-readout method **allows to measure** f_{em} of single event, by using complementary information from scintillation and Cherenkov light – different response ratio to EM and non-EM shower components (e/h)

• Dual-Readout Calorimeter (DRC) can offer **excellent energy resolution for hadron showers, even for EM showers** – in single detector.

Test Beam	2022	2023	2024
Location	SPS H8	PS T9	SPS H8
Module	Copper Plate	3D-Printing, SFHS, Lego-Like	SFHS, Copper Plate
Target Particle	High E EM	Low E EM	High E EM, Hadron

• Korea DRC R&D Collaboration has been **conducted test beam experiment** of prototype copper-based DRC modules, for the last few years @ CERN.

@CERN SPS H8, TB2024

Test-Beam experiments at CERN DRC R&D in Korea

- Prototype DRC module building
 - ∟ Copper Forming : Copper plate (Milling), 3D Metal Printing, Skiving HeatSink...
 - ∟ High Granularity : MCP-PMT (128 ch), SiPM (400 ch)
- Customized DAQ system
 - ${\mbox{\sc L}}$ Fast Timing Resolution : Based on DRS4 chip
- Test-Beam for EM & Hadronic performance
 - ${\mbox{\sc L}}$ Energy, Timing, Position Resolution

Test-Beam experiments at CERN DRC Test-Beam

@ SPS H8 Beamline (22, 24)

@ PS T9 Beamline (23)

Test-Beam 2023 CERN East Area PS T9

@CERN PS T9, TB2023

Test-Beam 2023 Module Setup

Test-Beam 2023 Experimental Setup

@ **PS T9**

Test-Beam 2023 Experimental Setup

Test-Beam 2024 CERN North Area SPS H8

Test-Beam 2024 Module Setup

- Largest prototype Cu-based DRC module, assembled with TB2022 module setup.
- Aimed for test-beam of both EM & hadronic particles (10~100 GeV scale), so the module has
 ~90% lateral deposit of hadronic shower and depth of 10 nuclear interaction length.
- Tested high granularity **MCP-PMT, SiPM** attached on center towers.

Test-Beam 2024 Module Installation

Test-Beam 2024 Experimental Setup

@ SPS H8

Test-Beam 2024 Sapphire Table – Moving & Rotation

Test-Beam 2024 Readout Cabling

Test-Beam experiments at CERN

Results

Summary

Korea DRC collaboration has conducted test beam experiment at CERN, for the last few years.

- At SPS H8 & PS T9 beamline, data taken with prototype DRC modules with customized DAQ system.
- Taken data of **various physics programs**, low energy (PS) to high energy (SPS), EM & hadronic.

Location	PS T9	SPS H8
Test Beam	2023	2022, 2024
Module	Complex	SFHS, Cu Plate
Target Particle	$0.5 \sim 5 \text{ GeV e}^+$	10 ~ 120 GeV e ⁺ , hadrons
Feature	Accessibility Compact Setup	Wide area Applicable setup
Issue	-	Beam Purity (2022) Sapphire table

Backup

Optical Fiber Specification Scintillating, Cerenkov Fiber

Scintillating Fiber (SCSF-78)

Cerenkov Fiber (SK-40)

Table 1				SK-40		
Item		Specification				
		Unit	Min.	Тур.	Max.	
	Core Material	-	Polymethyl-Methacrylate Resin			
	Cladding Material	-	Fluorinated Polymer			
	Core Refractive Index – 1.49					
Optical Fiber 1	Refractive Index Profile	-	Step Index			
	Numerical Aperture	-	0.5			
	Core Diameter	μm	920	980	1,040	
	Cladding Diameter	μm	940	1,000	1,060	
Approximate Weight		g/m	1			

Sectional View

Wavelength [nm]

Readout Detector Specification Square PMT, MCP-PMT

Hamamatsu R11265U

PLANACON XP85012, XP85112

PMT	Window Size	Max HV	Q.E (%)	Rise time
XP85012 (<mark>S</mark>)	53x53 mm²	2400 V	~7% at 550nm	0.6 ns
XP85112 (C)		2800 V	~21% at 400nm	0.5 ns

Readout Detector Specification SiPM

Hamamatsu S14160-1310PS

SiPM	Photosensitive Area (mm)	Pixel Pitch	# of pixels
S14160-1310ps	1.3 x 1.3	10 μm	16663

Photon detection efficiency vs. wavelength

