Recent changes to the PcInterlock following the injection of a pilot bunch into the LHC with a D1 power converter in off state

State of protection before the issue

- Circuits operational mode is monitored by SIS (e.g. simulation)
 - Circuit state monitoring was removed during LS2
 - Wrong mode = no injection
- Interlocked circuits faulty state is monitored by PIC
 - Faulty state = dump
 - Note: OFF is not a faulty state
- PcInterlock monitors that the circuits <u>current is within given tolerances</u>
 - It does not act on the state of the circuits by design, it only considers circuits in states: IDLE, ARMED or RUNNING
 - Wrong current = dump (depending on the circuit family, table in the next slides)

State of protection before the issue

- Circuits operational mode is monitored by SIS (e.g. simulation)
 - Circuit state monitoring was removed during LS2

	0	Wrong mode :]
•	Interlocked circui		Weakness:	
	0	Faulty state =	Merking circuite in invelid states	
	0	Note: OFF is r	are not monitored (e.g. OFF)	
•	PcInterlock moni			erances

- It does not act on the state of the circuits by design, it only considers circuits in states: IDLE, ARMED or RUNNING
- Wrong current = dump (depending on the circuit family, table in the next slides)

Issue on 10/04/2024

- 1. Successful MPS test involving switching OFF of RD1.LR1
- 2. Preparation of the machine for beam
- 3. Injection of pilot beam with RD1.LR1 accidentally left OFF
- 4. Quench of triplet IT1

LHC 2024-04-10 Morning Meeting https://indico.cern.ch/event/1397435/

RD1.LR1 protection issue

- Following a test for triggering the FMCM without PC fault during an inter-scrubbing period, the RD1.LR1 separation dipole was left off accidentally for the probe injection.
 - ► The test does not seem fully conclusive to me, FMCM seems to trigger with a delay.
- ► When the probe was injected, it was lost in the IT1, and triggered a quench of IT1.
- This is a "feature" in the PC_INTERLOCK:
 - The system correctly ignores orbit correctors in OFF state because we often operate with one of them missing (for availability).
 - But for any other circuit, a circuit that is not ON must NOT be ignored.
 - PIC/WIC do not interlock with a circuit is just OFF.
- ► Today we will restore a STATE test on injection for all circuits except for the orbit correctors.
 - Existed in the past, was removed due to redundancy with PC_INTERLOCK.
- ► This event is a good example of why, in the design of LHC MP, we enforced by HW to always force a probe injection into an empty ring.

Mitigation #1 SIS

- STATE PC is now checked in SIS
 - Valid states: IDLE, ARMED, RUNNING, ABORTING
 - All other states are invalid (e.g. OFF) \rightarrow interlock
- The check is performed for every circuit
- Interlock prevents injection

E [AND] PC-STATES					
E [AND] PC-STATES_S12					
L [AND] PC-STATES_S23					
E [AND] PC-STATES_S34					
E [AND] PC-STATES_S45					
L [AND] PC-STATES_S56					
L [AND] PC-STATES_S67					
L [AND] PC-STATES_S78					
L [AND] PC-STATES_S81					
L [AND] WARM-MAG-PC-STATES					
E [AND] RD-WARM-STATES					
RD1_LR1_STATE_OP					
RD1_LR1_STATE_PC					
RD1_LR5_STATE_OP					
RD1_LR5_STATE_PC					
RD34_LR3_STATE_OP					
RD34_LR3_STATE_PC					
RD34_LR7_STATE_OP					
RD34_LR7_STATE_PC					
L [AND] RQW3-STATES					
L [AND] RQW7-STATES					
E [AND] SPECTROMETER-STATES					

Mitigation #2 PcInterlock

- PcInterlock checks that the PCs currents are within given tolerances
- Previously, checks were performed only for "active" PCs
 - "active" = IDLE, ARMED or RUNNING
 - "inactive" = all other states
- Now, each "interlocking strategy" have access to the state of each PC
- Logic for interlock depends on the circuit type

Circuit type	# of inactive PCs to interlock
RBs, IPDs	1
RQs, IPQs, WARM QUADS, TRIPLETs, TUNE TRIMs	1
BBLRs	1
Orbit correctors	STATE is ignored

Implementation in production

- Mitigation #1 SIS
 - Deployed on 10/04/2024
- Mitigation #2 PcInterlock
 - Required changes in PcInterlock software are implemented and tested locally
 - Pending test with LHC circuits
 - Deployment during TS2

(could be anticipated if necessary, 1 shift needed for testing)

