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Disclaimer

« The calculations included in this talk are preliminary, as the study is at an early stage and many parameters
are yet to be defined or fully understood.

+ This talk is intended to show what the proposed strategy is, and to share it with magnet designers in a timely
manner, so we can work together towards the most effective magnet/cryogenic system design.

* Please keep in mind that the numbers shown here are likely to change as the design matures.
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Introduction

Following the decision to speed up the delivery of the FCC mid-term report (CDR*) in May 2025, the compatibility
of a future FCC-hh machine with the infrastructure outlined for FCC-ee needs to be evaluated.

This requires us to assess the compatibility of several FCC-hh scenarios (baseline using Nb;Sn at 1.9 K, 4.5 K
using Nb;Sn and 20 K using HTS) with the tunnel cross-section and space reservation at the surface for the

baseline FCC-ee machine.

The main drivers are to reduce operational energy consumption, capital costs, reduce He inventory, and
ensure compatibility with tunnel and surface while providing a viable solution for the magnets.

This talk describes the efforts made towards a solution for 14 T magnets using NbESn at around 4.5 K.
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Why 4.5 K?

» Simpler cryogenic system/cryoplant
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» Can avoid cold compressors that are a necessity for He Il cooling
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» Heat extraction at higher temperatures — lower COP-1, more energy efficient
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» Operational downtime after a quench is significant with He Il (due to large enthalpy
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difference of He | — He Il transition), reducing availability. The operational
downtime is reduced when working at 4.5 K.
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Why cooling channels (“dry-cooling”)?

* Forced flow of supercritical He enables heat extraction with high heat transfer coefficients

» Confining the He to channels eliminates the need for a cold mass outer shell to be leak tight —
simpler design, Q&A, shorter interconnects

By circulating He in confined channels instead of using immersion cooling, one reduces the He

inventory significantly — this has an important impact on He management (logistics, procurement,

management in case of release into tunnel, surface space requirements...)
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COOIIng at 1-9 K VS- 4-5 K » Conductivity of bulk liquid at 4.5 K is 5-6 orders

of magnitude lower than that of He Il

Pressurized He |l, static

Saturatgd He Il, flowing » This means that He | performs worse than
8\1 1 Toacn metals as a conduction medium (to transport heat

away from the coils to the heat sink)

‘ 7 \ * LHC-like scheme at 4.5 K using

AT, 0 saturated/pressurised He | makes no sense
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Murakami, Experimental study of thermo-fluid dynamic effect in He Il cavitating flow, Cryogenics, 2012.
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Cooling at 4.5 K- how?

Pool boiling Two-phase forced flow Cupercritical forced flow \
Near isothermal along arc/sector Near isothermal along arc/sector At 4.5 K, heat transfer comparable (or
. . - ; i : better) than 2-phase
& Large He inventory in contact with cold & Flow instabilities, heavily dependent on
mass local flow pattern (in turn dependent on Circuit pressure can be 3-4 bar

2 (some) penetration of He close to coils local heat load)

if immersed

Low Ap/p

Challenging control, slope-dependent Slope-independent cooling mode

2 Bubbles can form and be trapped Circuit pressure limited to 1.3 bar

2 Larger temperature gradient along

« < 0 o«

2 Heat transfer of He | High Ap/p magnet/arc/cell w.r.t. 2-phase
i Need to accept non-negligible AT Z Need to accept non-negligible AT
| ¢ radially in cold mass radially in cold mass
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https://doi.org/10.1016/0011-2275(69)90251-3
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Heat loads to cold mass

Total heat load

We are assuming the same steady-state heat loads L iy '
(static + dynamic) as stated in CDR for 1.9 K (1.4 W/m) Qcm = Cstatic * Qaynamic + Qtransient

but at around 4 K M

Steady-state loads

Magnet ramp down/up cycle

Table 5.11. Distributed steady-state heat loads (nominal conditions). (from CDR table) 10 kJ/m over 3200 s (tbc)
Temperature level 40-60K | 19K | 4K VLP
Static heat | Cold mass supporting system 24 0.13
in-leaks
(W/m) . : - :
Radiative insulation 013 Transient loads (hysteresis losses from ramping) are
Thermal shield 3.1 assumed to be 10 kJ/m for a full ramp-up/down cycle
x Feedthrough and vacuum barrier 0.2 0.1 _ H
8 B 012 for a double-aperture coil (E. Todesco)
f-) Distribution 3.6 0.1 0.24
Q Total static 9.3 0.58 0.24
2 | Dynamic Synchrotron radiation 57 0.08 .
& | heat loads * This means an added 3.1 W/m to the steady-state
© - - - -
5 | (W/m) | - . loads if considering powering schedule of CDR (3200 s
5 mage curren 3.
E Resistive heating in splices 0.3 for full CyCle)
v Beam-gas scattering 0.45
Total dynamic 60 0.83
Total 70 1.4 0.24
Dynamic range 8 2.5 1
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The Superconducting Super Collider (SSC)

Accelerator magnet cooling at around 4 K

Ring number | cryostat

84 K Shield sub-cooled liquid nitrogen

+ - - —ﬂ‘"—jr

Return helium gas
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t Single phase refurn o
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Magnet single
phase helium
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Figure 5.3-1. A conceptual representation of the SSC collider rings cryogenics system.
In each of the two rings the collider magnets are cooled in series by a flow of single-
phase helium. This stream is recooled at cell intervals by heat exchange with boiling
helium. The cryostat of each ring contains cooled shields at 84 K and 20 K.

Conceptual Design of the Superconducting Super Collider, 1986

The basic concept of magnet cooling and refrigeration distribution is illustrated in Fig.
5.3-1. In this figure a refrigeration plant is on the left, providing and accepting flow.
Single-phase helium at 4.15 K and 4 atmospheres is forced out into the magnet string of
each ring upstream and downstream from the refrigerator for a distance of 4 km. It flows
through the magnets in series and is recooled periodically to maintain the superconducting
windings at or below the specified 4.35 K. At the end of the 4 km string, the flow is
returned toward the refrigerator. This fluid is flowing at a pressure above its critical pres-
sure, so in all parts of the circuit only a single phase is possible. Along this line small flows
are withdrawn and expanded into pool-boiling recoolers spaced at intervals of one cell, 192
meters. The saturated gas from the recoolers is collected and returned to the refrigerator in
a third line.

Tevatron —- SSC — ... FCC ?

The ancestor of the SSC is, of course, the Tevatron, and this heredity is reflected in the
cryogenic system requirements. The Tevatron has produced a body of successful supercon-
ducting magnet operating experience with beam and beam-loss heating. The Tevatron mag-
nets are cooled by immersion in supercritical helium, the so-called single-phase flow, that is
cooled in turn by heat exchange with boiling helium. Although other systems are possible
and may have attractive features, any fundamental change in the single-phase cooling
concept requires development and demonstration under realistic operating conditions. This
is a complex and expensive task; unless some very strong reasons can be adduced for the
superiority of some alternative system, the Tevatron model must be used for the SSC.
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Proposed cooling scheme

Gas return

Pressure in gas return defines the saturation
conditions along the string of re-coolers
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' n arc cells
. Supply »| MAGNET CELL MAGNET CELL MAGNET CELL
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One supply line through entire magnets in series ‘ (return module)
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Let’s talk about temperature gradients

Unlike the baseline cooling scheme at 1.9 K, where there are virtually no temperature differences along an entire
sector, cooling at around 4.5 K intrinsically involves both radial and longitudinal temperature gradients

T Radial gradient:

» Between the heat sink (e.g. He inside cooling channel) and the magnet
coil/cold mass

» Depends on the solid materials between the coil and the heat sink,

Tm ax,mag
Tmax,H e

14T block coil contact forces and thermal contact resistance
design, courtesy Tininmag * Heavily dependent on the magnet design
Ariel Haziot Tonin te

Sector length

Longitudinal gradient:

» Temperature increase along the length of a magnet and along the string

Design parameter: of magnets (arc cell)

» Depends on the characteristics of the cooling circuit (circulating 1,
base temperature, heat loads, etc.)

* (almost) independent of magnet design

Tmax,mag =5K

He channel
(arbitrary
position)

v

&
<

1 Coil blocks
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Radial AT: estimates based on x-section

X. Gallud Cidoncha

Steady-state heat loads '

Using the magnet cross-section provided by A. Haziot, we estimated the

. . . . . 0.36 B li ial
radial temperature gradient during steady-state operation and during o aseline materials
the ramp down/up cycle '

0-28 Max T, = 4.9 K
*Calculated for 0.24

HeT=45K

) 0.2
Reminder: ) Insulation Max. T in AT from
. Steady-state — 1.4 W/m Polematerial | = op e i o cese coil [K] He [K] 0-16
0.12
4.92 0.42

* Ramping — 3 W/m

Steady state

25 0.08
=9 Titanium alloy G10
+3 Steady-state + ramp 5.28 0.78 0.04
0
Cooling channels 0 0.16 0.32 m
(heat sink at 4.5 K)
Supports +
radiation heat m
’/ loads ]
0.36 Steady-state + ramping | §3-3
’ Baseline materials
0.32 .
0.28 5.1
Max T, =5.3 K
0.24 5
0.2
4.9
0.16
4.8
14 T block coil design 012
t Ariel H gt ’ NB: Effective thermal conductivity used for the coil blocks is taken from 11T 0.08 4.7
courtesy Ariel Razio experimental data, incl. impregnation and interlayer insulation where
» applicable (see EDMS'1871957) ' 0.04 4.6
Beam_re“ated heat\ Hysteresis losses NB II: Thermal properties of other solids from NIST data, no thermal contact 0
(heat generation in resistance added 45

loads 0 0.16 0.32 m

the coil)


https://edms.cern.ch/document/1871957/1

P. Borges de Sousa | FCC-hh Cryogenics

Longitudinal AT sizing the cryogenic system

Gas return

_ screturn T T

e
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L * * T .
' W 1 m
- 4.0K, 0.8 bar evap
1 w !
1 =] :
| © Tin Tout
i | Meirc
bo---- ' »| MAGNET CELL MAGNET CELL MAGNET CELL
Supel /VV\ Far end of sector
Q' (return module)
[ [ : Longitudinal gradient in fluid — f *includes
Considering a 200 m cell: ongitudinal gradient in fuid — fo rounaudes
Heat load case Q [W/m] Q [W]
Steady-state 1.41 282

N

Steady-state loads only!



How to buffer the hysteresis losses?

Using He llat 1.9K

+ Take advantage of the h

igh ¢, of the press.

He Il bath and absorb the extra heat load by
allowing the bath’s temperature to rise

Example:

To buffer 10 kJ/m (ramp up/down cycle for a
dual aperture magnet) and keep the

temperature below T, (2.17 K) from its nominal

1.9 K, 40 litres/m are necessary (5.8 kg/m)

12000
10000

8000

Over 6.5x
LHC
inventory!

6000

4000 A

Specific heat capacity [J/(kg.K)]

(incl. QRL)

2000 4

—— Hellatp = 1.3 bar

1.7 18 1.9 20 21 22 23
Temperature in K
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Using He I at ~4.5 K

* ¢, of solid materials is insufficient to absorb the extra heat load due to ramping

Example: cold mass 55 tons/15.8 m dipole = 3.5 ton/m (CDR), c,(Fe) at 4.5 K =

0.5 J/(kg.K) — 1.75 kJ/K per meter

» Add He to the cold mass to buffer heat load
Example: To buffer 10 kJ/m and keep the temp.

between 4.5 K and 5 K, using the c,, of supercritical
He at 3 bar, 30 litres/m are needed (4.2 kg/m)

* |Increase circulating m of He in the magnets

Estimated 2-3x LHC inventory
(incl. QRL)

(see next slide)

Volumetric heat capacity, C,, (J/cm?K)

10°

107

10"

I EDOWx__';: /

E Glass/resin

J.W. Ekin, Experimental Techniques for Low-Temperature Measurements

Temperature (K)
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Cryo system: higher m to tackle ramping losses

Gas return

_ SC return

40K, 0.8 bar
\ Tin Tout

_______ »| MAGNET CELL MAGNET CELL MAGNET CELL

Supply /VV\ Far end of sector
Q- (return module)

-
i 1 . Longitudinal gradient in fluid — for includes
ConSIderlng a/200 m/cell: magnet T add radialgd irculation effort

COl

Steady-state 1.41 282

REFRIGERATOR

4.92

Steady-state +

. 5.28
ramping

4.51 902 3

*for first design of x-section
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Status/conclusions

From an overall system perspective:
» Proposed cooling scheme seems technically feasible, respecting drivers for lower energy consumption and He management
* Move from 1.9 K to 4.5 K may reduce the power consumption by at least estimated 30% (preliminary!)

» Overall, He inventory ~400 tons (~3x LHC) is lower than baseline at 1.9 K (~6.5x LHC) — positive implications on quench
management, He availability, storage, access restrictions in the tunnel

» Simpler interconnects: cold mass does not need to be leak tight + less space required for jumper, can increase filling factor

* Details, optimization, and study of transient modes (cooldown, quench recovery) will follow

From a magnet cooling point of view:
* Proposed cooling scheme can provide a reasonable environment for operating 14 T Nb;Sn magnets at around 4 K—-5 K
» Reasonable temperature gradients along a 200 m magnet cell (~0.4 K), radial gradients can be optimized

» Opportunity to gain significantly on available temperature margin by carefully designing the cold mass for conduction-cooled
scheme (as most of the gradient is radial and not longitudinal) — results shown are for a non-optimized cross-section!

» System can be sized to directly absorb the heat loads from ramping, not relying on liquid buffering
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Thank you for your attention!

Many thanks to B. Bradu, L. Delprat, T. Koettig, R. van Weelderen, A. Haziot, E. Todesco, X. Gallud Cidoncha, B. Naydenov for very
fruitful discussions!
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Spare slides
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FCC-hh parameter table evolution

Original 2019 FCC-hh CDR FCC Week 2024 update (L. Delprat)
I T Y T

Dipole field strength 12-14 T
Cold mass temperature 19K 19K ~45K
Cooling method He Il sat./press. He Il sat./press. supercritical He ~3-4 bar
Heat load by SR 57 W/m per dual aperture 57 W/m per dual aperture 14-27 W/m per dual aperture
Beam screen temperature 40-60 K 40-60 K 60-80 K (tbc)
Heat loads c 14AWm@ 19K c 1AWm@ 19K + O14Wm)@ 45K

+ 70 W/m @ 40-60 K *+ 70 W/m @ 40-60 K +  0O(20-40 W/m) @ 60-80 K
QRL diameter 1350 mm 1100 mm ???
Cryo cooling length 8.4 km 5 km per side 5 km per side
Header B diameter 630 mm 470 mm ???

He inventory ~ 880 ton ~ 820 ton ???



P. Borges de Sousa | FCC-hh Cryogenics

101 4 \
70,(\
c %0k,
S 1004
=
v
3
a
()]
a
-1
10 —&— Hell
—&— Two-phase He
—&— 3 bar
—&— 10 bar
20 bar
10_2 T T T T L 1 T 1
0 10 20 30 40 50 60

Enthalpy in J/g



P. Borges de Sousa | FCC-hh Cryogenics

Synchrotron radiation in FCC-hh

* We’re dealing with half of the SR w.r.t. CDR (or even less)

033 047

S flev)
132

RIS

M. Bened|kt FCC Week 2024

*ring *straight *straight *both *for both
circumference sections sections aperlures apertures
Configuration C [km] L [km] B [T] n [%] Ecu Jlote Source/comments
[TeV] SR [kW] [W/m]
FCC as per CDR 97.75 4800 FCC-hh CDR pp. 801
20 117 8490 110 FCC week 2024
16 94 3480 45 calculated
Sueeieees: 80 e e .
FCC, 2024 update 90.7 13.8 :" 14 82 2040 27 ": FCC week 2024
13 76 1520 20 ! calculated
12 70 1100 14 . calculated

FCC, 2024 HFM 90.7 13.8 14 87 89 2850 37 calculated
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Cooling channels vs. cross-flow

Cooling channels

* He is confined to cooling pipes places close to the coil

» Rest of cold mass (white spaces) is in vacuum; no
need for thick He vessel withstanding 20 bar

Cross-flow

» The same He circuit is allowed to flow through the
openings of the cold mass (+ additional cooling pipes)

 Entire cold mass needs to be leak tight, and withstand
pressure rise in case of quench
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Main drivers for FCC-hh compatibility

Option

FCCat19K y¢®

(Nb,Sn) %@9

FCC at 4.5 K
(Nb,Sn)

Cryogen Power
content consumption

~ 10° kg He 262 MW [2]
Intrinsically Carnot + no cold
lower, no liquid cCompressors
bath

Able to
handle
transient
loads?

Yes
(via ¢, of He II)

In principle yes
(might need
liquid
reservoirs at
end of sector)

AT along arc cell?

Extremely low gradient with
He Il operation (= mK)

?

Will require moderate AT
(=K)

Size of QRL

= @1.1 m (8 points)

Ht
No VLP line required but
could have large m; lower
AT means larger QRL (but
still < @1.1 m)



