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Charge

e \What are the HEP use cases for fast-ML/FPGAs and what is the current

status

o Trigger/DAQ applications: O(us) latency — “traditional” use on custom hardware
o  Wider use as accelerator for CPU based workloads — emerging — less UK involvement?
o Status

First BDTs and NNs running in ATLAS and CMS hardware triggers deployed

Large range of examples planned for HL-LHC upgrade

Development pipelines for ML on FPGAs — established but further development needed
Next Gen trigger project at CERN platform for development (within ATLAS UK) of ML
pipelines for FPGA



Charge

e \What are the challenges/barriers that we are facing in this area (e.g. software,

training, skills-capacity, hardware, etc.)?
o Steep learning curve — albeit not as steep as VHDL
Understanding and tools e.g. hisdml, pruning, quantisation
Bottleneck is (skilled, technical) effort — technical PhD funding, DRD funding ....
Consolidate UK skills across experiments — currently quite siloed
Evaluate industry directions e.g. Versal Al engines vs custom electronics (DRD7 etc.)
Challenges with obsolescence and software tools support
Explainability a key topic for confidence in tools and algorithms — in general but especially so
in real time where data is lost
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Charge

e \What are the opportunities in this area for HEP (e.g. enhanced outcomes,
wider connections, funding, industry engagement, knowledge exchange etc.)?
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Highly trained people useful to science and UK generally — many people go on to data science
and elsewhere e.g. CERN

Niche in Al — not well covered or supported by industry in general

Need to prepare case(s) to allow access to wider funding — examples from science & beyond
Industry connections — good connections in this area to key players and UK SMEs

Community tool hisdml — UK contributes, plans driven by US towards formal basis



ML based pipelines for FPGA implementations
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AT N —— What we can do now in Conifer:
Single scalar-leaf trees

* Two-class classifiers
* 1-targetregressors
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We would like multi-output trees!
* This can mean:

* Each target requires a separate binary BDT
* Resources scales With Ny, e
* Large N, = large resources

Vector-leaf trees (preferred)
* Targets share single common tree
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* Large Ny, s * large resources!




