Carlo's Contribution to Neutrino Physics and Detector Technology

Prof. Antonio Zoccoli INFN President

CERN, 18/10/2024

tuto Nazionale di Fisica Nucleare

INFŃ

	EUROPEAN	ORGANIZATION	FOR	NUCLEAR	RESEARCH
					EP Internal Report 77- 16 May 1977
	THE LI	QUID-ARGON TIN	Æ PRO	JECTION	CHAMBER :
, .	<u>A NE</u>	W CONCEPT FOR	NEUTR	INO DETE	CTORS
		C. 1	Rubbia	L	
					•
· .					

ABSTRACT

It appears possible to realize a Liquid-Argon Time Projection mber (LAPC) which gives an ultimate volume sensitivity of 1 mm³ and rift length as long as 30 cm. Purity of the argon is the main techogical problem. Preliminary investigations seem to indicate that s would be feasible with simple techniques. In this case a multidred-ton neutrino detector with good vertex detection capabilities ild be realized.

Historical background

- Even before the experimental discovery of intermediate vector bosons at UA1, Carlo was thinking of how to remarkably improve neutrino physics
 - A growing and promising field
- Existing technologies (Water Cherenkov, Sampling massive detectors, massive bubble chambers) where either to light and slow to allow high precision statistics or incapable to provide details of the interactions
 - A new innovative technology was called for
 - 1977 proposal to build a Liquid Argon Time Projection Chamber

1979 Group photo

Neutrino physics Today and LAr

- Leptons, and especially neutrinos, are not just mirroring the quark sector
 - They are remarkably light
 - They offer a rich and unique oscillation pattern, including possibly large CPV
 - They have only weak interactions
- Important questions or discoveries still ahead:
 - CPV in lepton sector, with interesting potential cosmological implications
 - Neutrino mass term (Dirac vs Majorana), with implications on Lepton Number violation
 - Is there a hidden "sterile" sector?
 - Is neutrino small mass connected to BSM physics through see-saw mechanism?
- → To answer these questions we need next generation experiments with better technologies
- \rightarrow LAr TPC, after decades of work, has become reality and offer unique opportunities
- → An important spin-off of the LAr TPC effort has been the development of double-phase liquid xenon and argon TPCs, widely used in dark matter search experiments

Liquid Argon Imaging Technology

- Neutrino interactions are characterized by a very large number of potential events of different configurations and a large number of related channels which all need to be separately identified and accurately measured.
- The liquid Argon Imaging technology (LAr-TPC) is a new kind of detector, effectively an electronic bubble-chamber that Carlo has originally proposed at CERN [CERN-EP/77-08 (1977)], supported by the Italian Institute for Nuclear Research (INFN).
- Liquid Argon can be operated with very large sensitive masses, it is continuously sensitive, self-triggering, it provides three-dimensional views of ionising events, with particle identification from dE/dx, range measurements and multiple scattering.
- It acts also as a good homogeneous calorimeter of very fine granularity and high accuracy.
- Argon is inert, not flammable and it is operated safely even deep underground and without pressure or moving parts.

Bubble diameter ≈ 3 mm (diffraction limited)

Gargamelle bubble chamber

The first large scale underground detector

Medium
Sensitive mass
Density
Radiation length
Collision length
dE/dx

Heavy freon						
3.0	ton					
1.5	g/cm3					
11.0	cm					
49.5	cm					
2.3	MeV/cm					

ICARUS electronic chamber

Medium Liquid Argon < Sensitive mass Many ktons Density 1.4 g/cm3 Radiation length 14.0 cm Collision length 54.8 cm dE/dx MeV/cm 2.1 UV light Charge

Cerenkov light (if $\beta > 1/n$ *)*

Bubble size 3 x 3 x 0.3 mm3

LAr is a cheap liquid

(≈1CHF/litre), vastly

produced by industry

1985

Imaging Cosmics And Rare Underground Signals

THE ICARUS PROPOSAL LNGS

SEARCHING FOR NEW UNDERGROUND PHENOMENA WITH HIGH

RESOLUTION VISUAL TECHNIQUES AND MAGNETIC ANALYSIS

(ICARUS)

A PROPOSAL

FOR THE GRAN SASSO LABORATORY

CERN - Harvard - Milano - Padova - Roma - Tokyo - Wisconsin Collaboration

July 2, 1985

The Icarus long flight

- 1977 conceptual idea
- 1985 ICARUS proposal
 - LNGS proposed by A. Zichichi in 1979, approved and financed in 1982, completed in 1987 [Science Fiction schedule today....]
- R&D in Pavia
 - 1987 First LAr TPC
 - 1991-1995 "small" (a few tons) scale demonstrators
 - 1997-1999 test beams @ CERN
 - 2001-2008 T600 modules in Pavia
- 2010-2013 Science with CNGS beam and cosmics @ LNGS

• 2014- Today, IcarUS is at Fermilab to study neutrino oscillations at high precision, after a careful refurbishment at CERN

H. Matisse - Icarus

INFN

Pavia 2002

The first large scale underground detector:

2010-2013

- The first large-scale successful experiment ICARUS-T600, 0.76 kt ultra-pure LAr at LNGS exposed underground to CNGS and atmospheric vs
 - Tracking device: 3D event topology with $\Delta x \sim mm^3$, ionisation drifted undisturbed for meters with E_D= 0.5 kV/cm in pure LAr;
 - Full sampling homogeneous calorimeter: E measurement by charge signal integration;
 - Local dE/dx:remarkable e/ γ separation, 0.02 X₀ sampling, X₀=14 cm, a powerful PID by dE/dx vs range.
 - Fast timing signal from scintillation light collected by TPB coated PMTS
- Paving the way for Long Baseline experiments

cathode

2011 JINST 6 P07011

ICARUS-T600 @ LNGS Hall B: 0.77 kton LAr-TPC

N2 liquefiers: 12 units, 48 kW total cryo-power

N2 Phase separator

30 m³ Vessels for LN2 cooling circuit

54000 electronics channels (low noise charge amplifiers + digitizers, S/N > 10)

Results at LNGS 2010-2013

> Long Electron Lifetime

- The main technological challenge of the LAr-TPC development is the sufficiently long free lifetime τ_{ele} of drifting electrons:
 - In the 2001 technical run in Pavia, τ_{ele} = 1.8 ms
- New industrial purification methods developed at an exceptional level: remnants of electronegative impurities (O2) have to be initially and continuously purified:
 - Extremely high $\tau_{ele} \approx 21 \text{ ms}$ ($\approx 15 \text{ ppt}$ molecular impurities) measured with cosmic μ 's in a 50 litres LAr-TPC in INFN-Legnaro ICARINO.
 - Electron signal attenuation of ~10 % for a longest drift of 5 meters is obtained opening the way to exceptionally long drift distances.

Results at LNGS 2010-2013

> Lar purity

- Electron lifetime at LNGS studying the charge signal attenuation on cosmic μ 's in the drift:
 - τ_{ele} > 7 ms (~40 p.p. trillion [02] eq.)
 - 12% maximum charge attenuation on 1.5 m
- Cross check with muons from CNGS v interacting in the upstream rock: dE/dx signal correctly reconstructed constant along the drift coordinate;
- Upgraded argon recirculation system: $\tau_{ele} > 15 \text{ ms !}$

Results at LNGS 2010-2013

Particle Identification e.g. $(k^+ \rightarrow \mu^+ \rightarrow e^+)$

ICARUS EVENT

Efficient P.Id. (>90%), low misidentification, due to precise 3D reconstruction, dE/dx, range measurement:

- stopping power;
- recognition of secondary particle production after decay/interaction.

Probing LSND "anomaly"

- Analysis on 7.93 x 10^{19} pot event sample provided the limit on the oscillation probability P($\nu\mu \rightarrow \nu e$) \leq 3.92 (7.83) x 10^{-3} at 90 (99) % CL.
 - ICARUS result indicates a very narrow region of the parameter space (Δm² ≈ 0.5 eV2, sin²2θ ≈ 0.005) where all experimental results can be accommodated at 90% C.L.

First Atmospheric Neutrino In LAr

 $E_{\text{DEP}} = 2.12 \text{ GeV}$

2019 Universe, 5, 17.

IcarUS 2014-today

- ICARUS-T600 was overhauled at CERN in 2014-18 within the Neutrino Platform following a CERN-INFN Agreement. Main pojnts:
 - 2 modules, 2 TPCs per module with central cathode (1.5 m drift, E_D= 0.5 kV/cm);
 - 3 readout wire planes per TPC, in total 54000 wires at 0, \pm 60°, 3 mm pitch; new faster, higher-performance read-out electronics;
 - Upgraded light collection system: 360 8" PMTs, TPB coated detecting scintillation light by particles in LAr;
 - New cold vessels, purely passive insulation and refurbished cryogenics and purification equipment;
 - Surrounded by $\sim 4\pi$ Cosmic Ray Tagger system, protected by ~ 3 m thick concrete overburden.

Wires planes

→ Importance of neutrino platform @ CERN !!!!

IcarUS 2014-today

The Cosmic Ray Tagger (CRT) encloses the detector: a double layer of scintillator bars (~10³ m²) tagging incoming cosmics with ~95% efficiency.

Cosmic γ 's and neutrons are suppressed by ~3 m concrete overburden on top of CRT.

IcarUS 2014-today

IcarUS 2014-today

Data Taking @ FNAL

- June 2022: start of data taking for physics
 - Data acquisition largely successful, currently with >97% data taking efficiency;
 - The cryogenic and purification system performed smoothly keeping resic impurities in LAr at ~ 40 p.p.t. of [02]equi
 - The free electron drift lifetime $\tau_{ele} \sim 7-8$ ms, results in an almost full track detection efficiency in the whole 1.5 m drift ($\Delta t \sim 1$ ms).

Collected Protons on target (PoT)		BNB (FHC) positive focusing	NuMI (FHC) positive focusing	NuMI (RHC) negative focusing	
RUN-1	(Jun-Jul 22)	0.41 1020	0.68 1020	-	
RUN-2	(Dec 22-Jul 23)	2.05 10 ²⁰	2.74 10 ²⁰	-	
RUN-3*	(Mar 15 -July 11, 2024)	1.36 10 ²⁰	-	2.82 10 ²⁰	
TOTAL		3.82 10 ²⁰	3.42 10 ²⁰	2.82 10 ²⁰	_

IcarUS 2014-today

Full Reco with automatic selection

Bethe Bloch µ

Residual Range [cm]

The ICARUS Legacy

LAr TPC technology

Liquid Argon TPC (C. Rubbia, 1977) is the technique with the best particle imaging capability at kton scale:

- 150 Anode Plane Assemblies (APAs)
- 384,000 readout wires
- Anode-Cathode 3.5 m drift;
- 500 V/cm field; cathode at -180 kV;
- 6000 photon detection system (PDS) channels

- Charge Readout Planes : perforated PCB's with segmented electrodes (strips)
- CRPs at the top and bottom
- Cathode (-300 kV) in the middle
- two 6.5 m drift chambers 450 V/cm field

Concluding remarks

- The seminal 1977 idea and the long R&D effort in Pavia, CERN and LNGS has brought a brand new technology to maturity
- ICARUS at LNGS has been the first large scale LAr TPC with full reco capability, large mass, sufficient purity for large drift operations
- ICARUS is a key element of the current Short Base Line program at Fermilab
 - It has the capability to "close" the LSND / Neutrino-4 anomalies or achieve a major discovery
- The future of LAr TPCs is DUNE and DUNE would not be there without Carlo!

Thank you Carlo !!

A nice neutrino event with CC and a stopping proton

Crossing the Atlantic

IcarUS 2014-today

Data Taking @ FNAL

INFN