Carlo's Contribution to Neutrino Physics and Detector Technology

Prof. Antonio Zoccoli INFN President

CERN, 18/10/2024

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

EP Internal Report 77-8 16 May 1977

THE LIQUID-ARGON TIME PROJECTION CHAMBER:

A NEW CONCEPT FOR NEUTRINO DETECTORS

C. Rubbia

ABSTRACT

It appears possible to realize a Liquid-Argon Time Projection mber (LAPC) which gives an ultimate volume sensitivity of 1 mm³ and rift length as long as 30 cm. Purity of the argon is the main techogical problem. Preliminary investigations seem to indicate that s would be feasible with simple techniques. In this case a multidred-ton neutrino detector with good vertex detection capabilities ald be realized.

Historical background

- Even before the experimental discovery of intermediate vector bosons at UA1, Carlo was thinking of how to remarkably improve neutrino physics
 - A growing and promising field
- Existing technologies (Water Cherenkov, Sampling massive detectors, massive bubble chambers) where either to light and slow to allow high precision statistics or incapable to provide details of the interactions
 - A new innovative technology was called for
 - 1977 proposal to build a Liquid Argon Time Projection Chamber

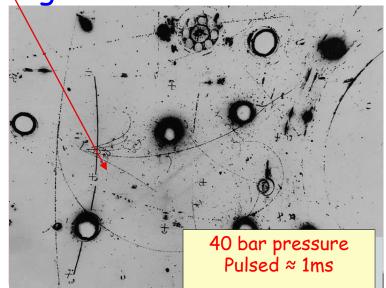
1979 Group photo

Neutrino physics Today and LAr

- Leptons, and especially neutrinos, are not just mirroring the quark sector
 - They are remarkably light
 - They offer a rich and unique oscillation pattern, including possibly large CPV
 - They have only weak interactions
- Important questions or discoveries still ahead:
 - CPV in lepton sector, with interesting potential cosmological implications
 - Neutrino mass term (Dirac vs Majorana), with implications on Lepton Number violation
 - Is there a hidden "sterile" sector?
 - Is neutrino small mass connected to BSM physics through see-saw mechanism?
- → To answer these questions we need next generation experiments with better technologies
- → LAr TPC, after decades of work, has become reality and offer unique opportunities
- → An important spin-off of the LAr TPC effort has been the development of double-phase liquid xenon and argon TPCs, widely used in dark matter search experiments

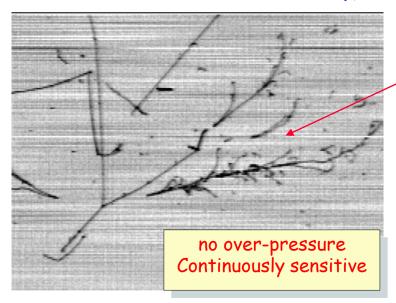
Liquid Argon Imaging Technology

- Neutrino interactions are characterized by a very large number of potential events of different configurations and a large number of related channels which all need to be separately identified and accurately measured.
- The liquid Argon Imaging technology (LAr-TPC) is a new kind of detector, effectively an electronic bubble-chamber that Carlo has originally proposed at CERN [CERN-EP/77-08 (1977)], supported by the Italian Institute for Nuclear Research (INFN).
- Liquid Argon can be operated with very large sensitive masses, it is continuously sensitive, self-triggering, it provides three-dimensional views of ionising events, with particle identification from dE/dx, range measurements and multiple scattering.
- It acts also as a good homogeneous calorimeter of very fine granularity and high accuracy.
- Argon is inert, not flammable and it is operated safely even deep underground and without pressure or moving parts.


Bubble diameter ≈ 3 mm (diffraction limited)

LAr is a cheap liquid (≈1CHF/litre), vastly produced by industry

"Bubble" size 3 x 3 x 0.3 mm3

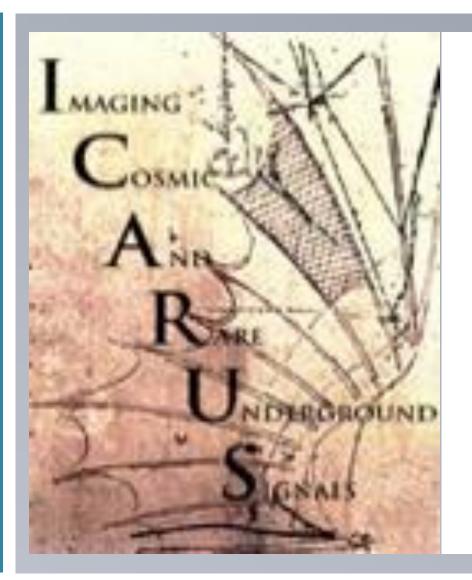

The first large scale underground detector

Gargamelle bubble chamber

Medium	edium <i>Heavy f</i>	
Sensitive mass	3.0	ton
Density	1.5	g/cm ³
Radiation length	11.0	cm
Collision length	49.5	cm
dE/dx	2.3	MeV/cm

ICARUS electronic chamber

Medium
Sensitive mass
Density
1.4 g/cm3
Radiation length
Collision length
dE/dx
Liquid Argon
Many ktons
1.4 g/cm3
14.0 cm
2.1 MeV/cm



Charge Cerenkov light (if β>1/n)

Imaging Cosmics
And
Rare Underground
Signals

THE ICARUS PROPOSAL LNGS

SEARCHING FOR NEW UNDERGROUND PHENOMENA WITH HIGH

RESOLUTION VISUAL TECHNIQUES AND MAGNETIC ANALYSIS

(ICARUS)

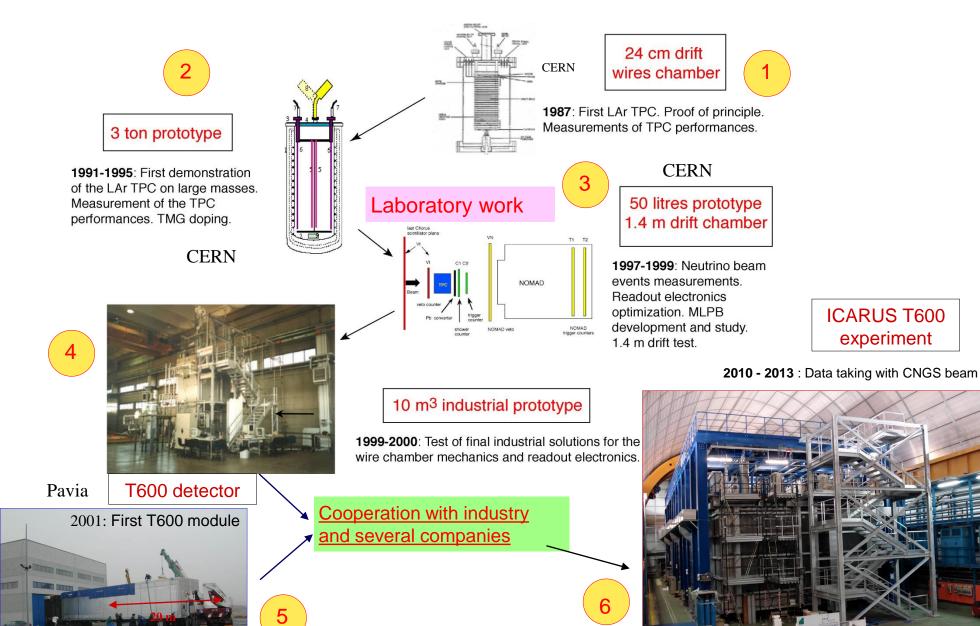
A PROPOSAL

FOR THE GRAN SASSO LABORATORY

CERN - Harvard - Milano - Padova - Roma - Tokyo - Wisconsin Collaboration

July 2, 1 985

H. Matisse - Icarus


The Icarus long flight

- 1977 conceptual idea
- 1985 ICARUS proposal
 - LNGS proposed by A. Zichichi in 1979, approved and financed in 1982, completed in 1987 [Science Fiction schedule today....]
- R&D in Pavia
 - 1987 First LAr TPC
 - 1991-1995 "small" (a few tons) scale demonstrators
 - 1997-1999 test beams @ CERN
 - 2001-2008 T600 modules in Pavia
- 2010-2013 Science with CNGS beam and cosmics @ LNGS

 2014- Today, IcarUS is at Fermilab to study neutrino oscillations at high precision, after a careful refurbishment at CERN

The first large scale underground detector history

Nucl. Instrum. Meth. A 527 (2004) 329.

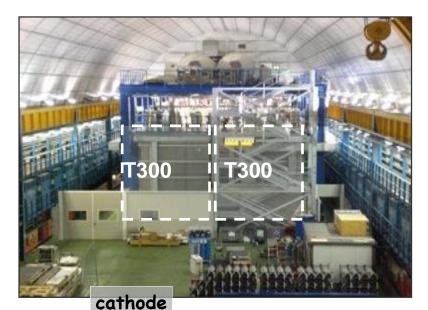
LNGS Hall-B

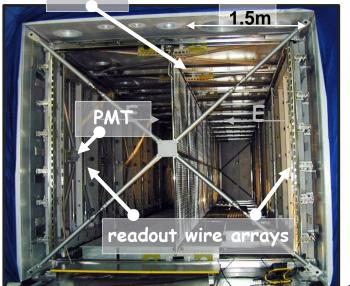
INFN

ICARUS T600

experiment

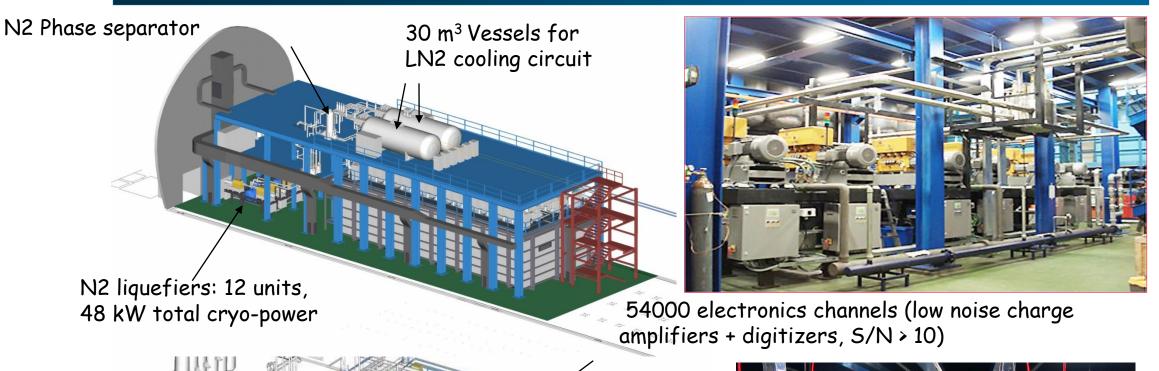
Test run.

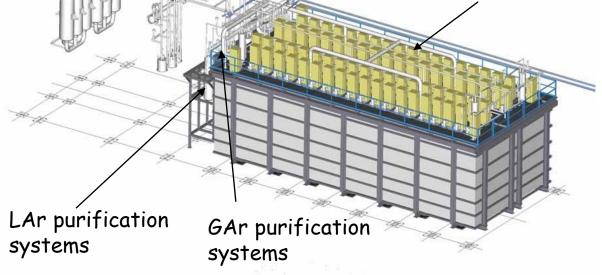

Pavia **2002**



The first large scale underground detector:

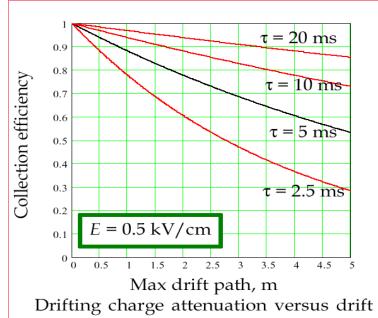
2010-2013

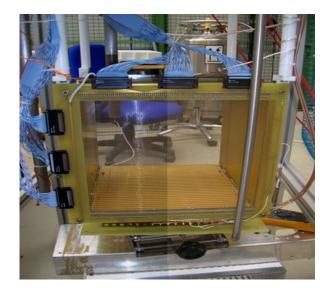

- The first large-scale successful experiment ICARUS-T600, 0.76 kt ultra-pure LAr at LNGS exposed underground to CNGS and atmospheric vs
 - Tracking device: 3D event topology with $\Delta x \sim \text{mm}^3$, ionisation drifted undisturbed for meters with $E_D = 0.5 \text{ kV/cm}$ in pure LAr;
 - Full sampling homogeneous calorimeter: E measurement by charge signal integration;
 - Local dE/dx:remarkable e/ γ separation, 0.02 X_0 sampling, X_0 =14 cm, a powerful PID by dE/dx vs range.
 - Fast timing signal from scintillation light collected by TPB coated PMTS
- Paving the way for Long Baseline experiments



INFŃ

ICARUS-T600 @ LNGS Hall B: 0.77 kton LAr-TPC

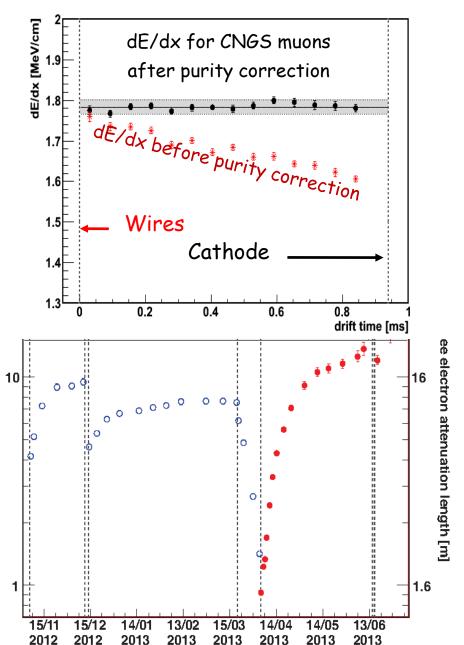



Results at LNGS 2010-2013

Long **Electron** Lifetime

- The main technological challenge of the LAr-TPC development is the sufficiently long free lifetime τ_{ele} of drifting electrons:
 - In the 2001 technical run in Pavia, $\tau_{ele} = 1.8$ ms
- New industrial purification methods developed at an exceptional level: remnants of electronegative impurities (02) have to be initially and continuously purified:
 - Extremely high $\tau_{ele} \approx 21 \text{ ms}$ ($\approx 15 \text{ ppt}$ molecular impurities) measured with cosmic μ's in a 50 litres LAr-TPC in INFN-Legnaro ICARINO.
 - Electron signal attenuation of ~10 % for a longest drift of 5 meters is obtained opening the way to exceptionally long drift distances.

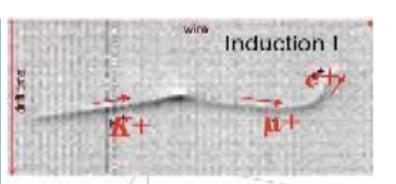
path at different electron lifetimes

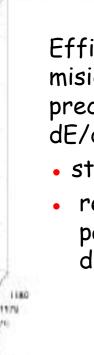

Results at LNGS 2010-2013

Lar purity

 Electron lifetime at LNGS studying the charge signal attenuation on cosmic μ's in the drift:

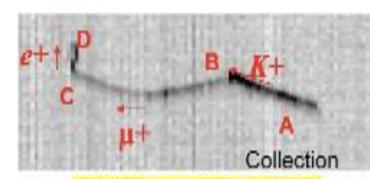
```
\not\in \tau_{ele} > 7 ms (~40 p.p. trillion [02] eq.)
```

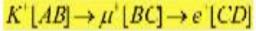

- 12% maximum charge attenuation on 1.5 m
- Cross check with muons from CNGS v interacting in the upstream rock: dE/dx signal correctly reconstructed constant along the drift coordinate;
- Upgraded argon recirculation system: $\tau_{ele} > 15 \text{ ms}!$

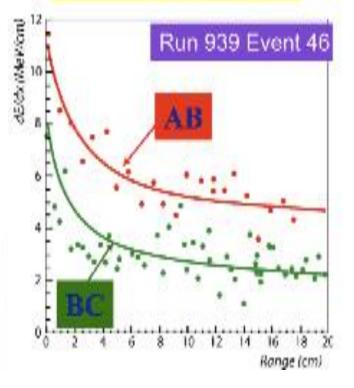

Date

Results at LNGS 2010-2013

Particle Identification e.g. $(k^+\!\to\mu^+\!\to e^+)$

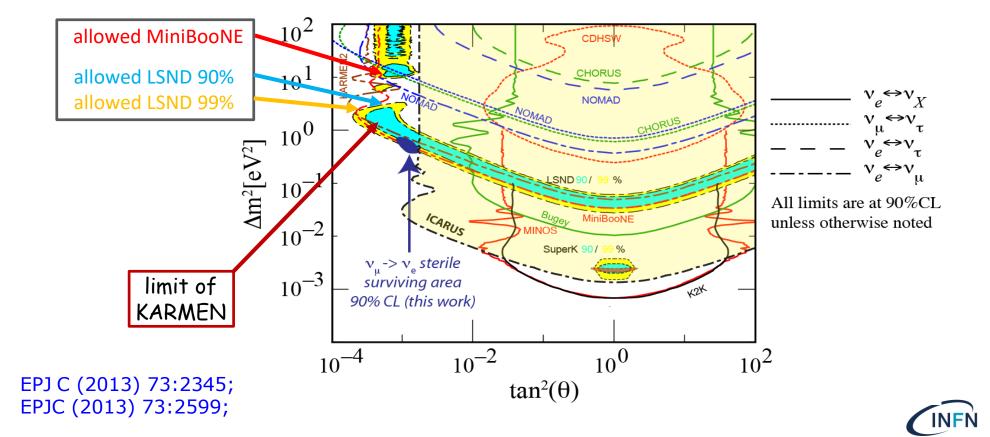


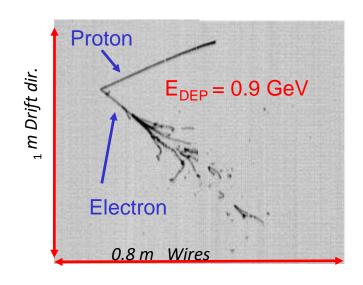

ICARUS EVENT

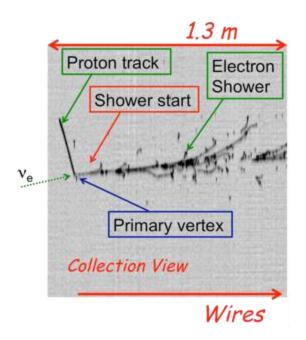


Efficient P.Id. (>90%), low misidentification, due to precise 3D reconstruction, dE/dx, range measurement:

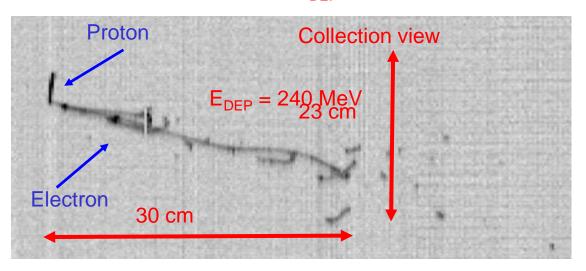
- stopping power;
- recognition of secondary particle production after decay/interaction.



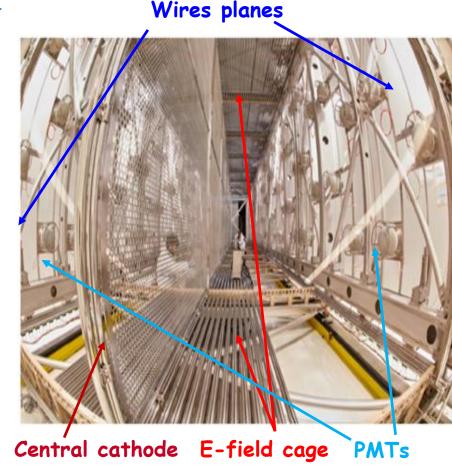



Probing LSND "anomaly"

- Analysis on 7.93 x 10^{19} pot event sample provided the limit on the oscillation probability $P(\nu\mu\rightarrow\nu e)\leq 3.92~(7.83)~x~10^{-3}$ at 90 (99) % CL.
 - ICARUS result indicates a very narrow region of the parameter space $(\Delta m^2 \approx 0.5 \text{ eV2}, \sin^2 2\theta \approx 0.005)$ where all experimental results can be accommodated at 90% C.L.

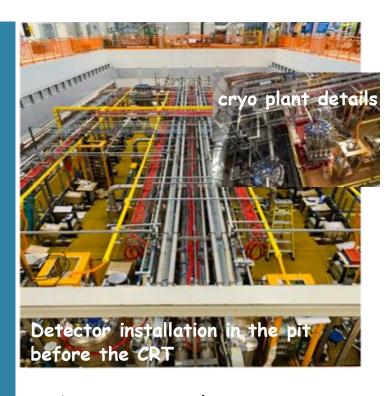


First Atmospheric Neutrino In LAr


 $E_{DEP} = 2.12 \text{ GeV}$

IcarUS 2014-today

- ICARUS-T600 was overhauled at CERN in 2014-18 within the Neutrino Platform following a CERN-INFN Agreement. Main points:
 - 2 modules, 2 TPCs per module with central cathode (1.5 m drift, E_D= 0.5 kV/cm);
 - 3 readout wire planes per TPC, in total 54000 wires at 0, \pm 60°, 3 mm pitch; new faster, higher-performance read-out electronics;
 - Upgraded light collection system: 360 8"
 PMTs, TPB coated detecting scintillation light by particles in LAr;
 - New cold vessels, purely passive insulation and refurbished cryogenics and purification equipment;
 - Surrounded by $\sim 4\pi$ Cosmic Ray Tagger system, protected by ~ 3 m thick concrete overburden.

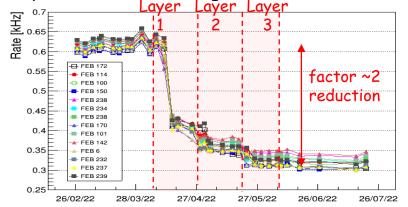


Structure of one module with 2 TPC chambers

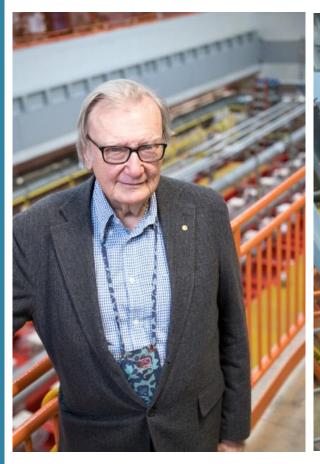
→ Importance of neutrino platform @ CERN !!!!

IcarUS 2014-today

The Cosmic Ray Tagger (CRT) encloses the detector: a double layer of scintillator bars (~10³ m²) tagging incoming cosmics with ~95% efficiency.

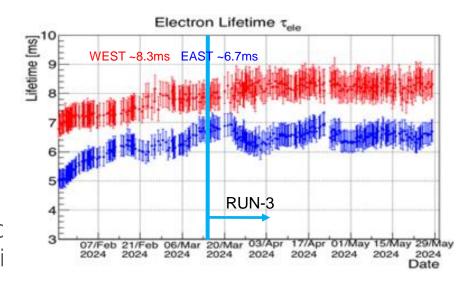


• Cosmic γ 's and neutrons are suppressed by ~3 m concrete overburden on top of CRT.



Cosmic rays reduction during the overburden installation

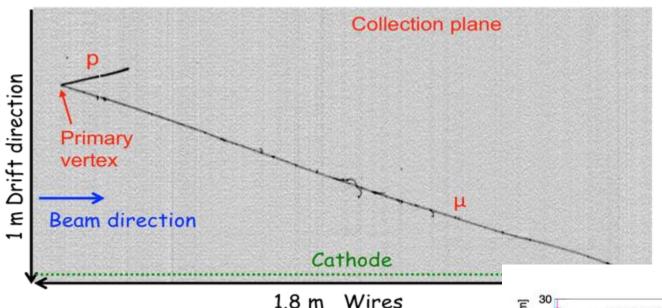
IcarUS 2014-today



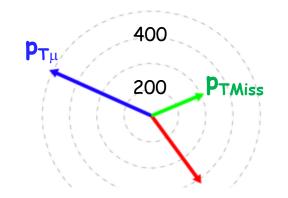
IcarUS 2014-today

Data Taking @ FNAL

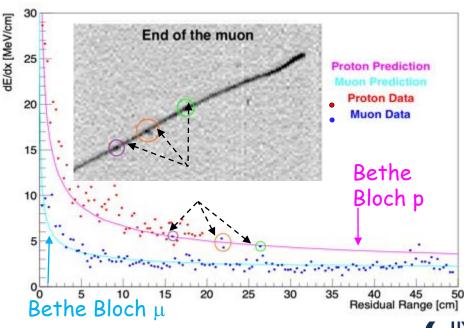
- June 2022: start of data taking for physics
 - Data acquisition largely successful, currently with >97% data taking efficiency;
 - The cryogenic and purification system performed smoothly keeping resic impurities in LAr at ~ 40 p.p.t. of [O2]equi


INFN

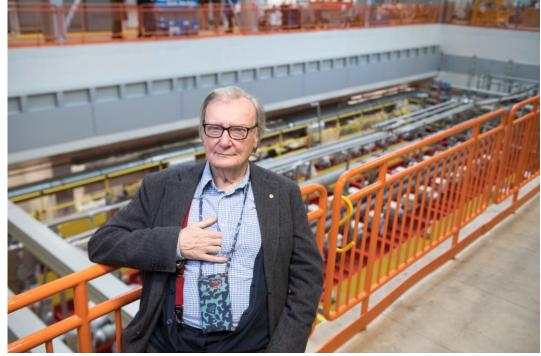
• The free electron drift lifetime $\tau_{\rm ele} \sim$ 7-8 ms, results in an almost full track detection efficiency in the whole 1.5 m drift ($\Delta t \sim 1$ ms).


Collected Protons on target (PoT)	BNB (FHC) positive focusing	NuMI (FHC) positive focusing	NuMI (RHC) negative focusing
RUN-1 (Jun-Jul 22)	0.41 10 ²⁰	0.68 10 ²⁰	-
RUN-2 (Dec 22-Jul 23)	2.05 10 ²⁰	2.74 10 ²⁰	-
RUN-3* (Mar 15 -July 11, 2024)	1.36 10 ²⁰	-	2.82 10 ²⁰
TOTAL	3.82 10 ²⁰	3.42 10 ²⁰	2.82 10 ²⁰

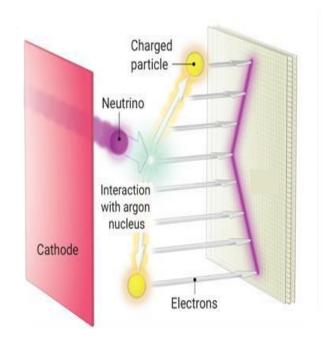
IcarUS 2014-today

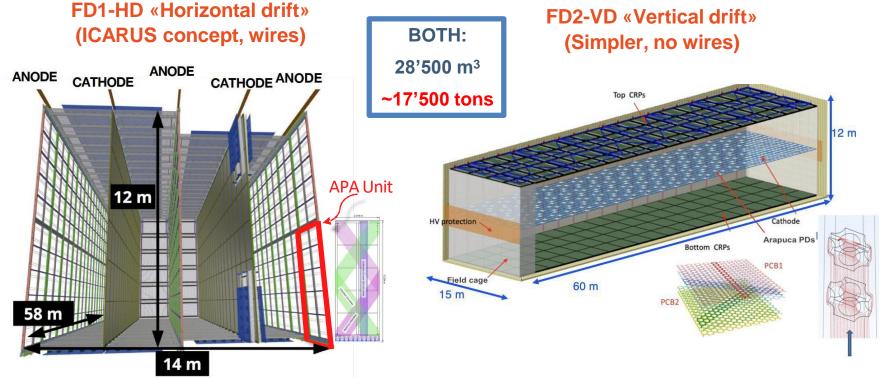

Full Reco with automatic selection

Momentum in the transverse plane (MeV/c)



- Two particles: 3.8 m long stopping muon and ~20 cm track stopping proton, total deposited energy ~1.1 GeV;
- Total momentum at 80 from the beam ax
- Total transverse momentum ~200 MeV/





The ICARUS Legacy

LAr TPC technology

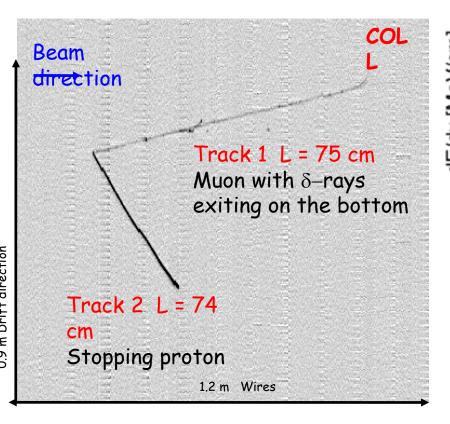
Liquid Argon TPC (C. Rubbia, 1977) is the technique with the best particle imaging capability at kton scale:

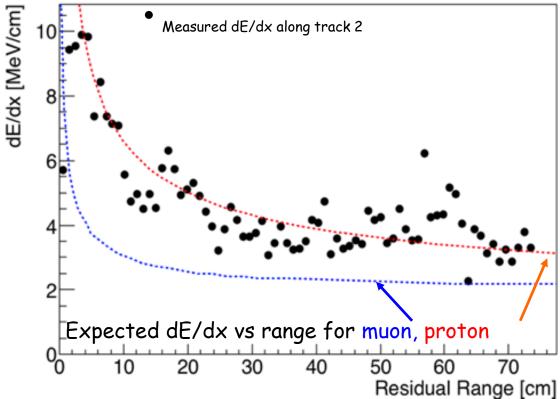
- 150 Anode Plane Assemblies (APAs)
- 384,000 readout wires
- Anode-Cathode 3.5 m drift;
- 500 V/cm field; cathode at -180 kV;
- 6000 photon detection system (PDS) channels

- Charge Readout Planes: perforated PCB's with segmented electrodes (strips)
- CRPs at the top and bottom
- Cathode (-300 kV) in the middle
- two 6.5 m drift chambers 450 V/cm field

Concluding remarks

- The seminal 1977 idea and the long R&D effort in Pavia, CERN and LNGS has brought a brand new technology to maturity
- ICARUS at LNGS has been the first large scale LAr TPC with full reco capability, large mass, sufficient purity for large drift operations
- ICARUS is a key element of the current Short Base Line program at Fermilab
 - It has the capability to "close" the LSND / Neutrino-4 anomalies or achieve a major discovery
- The future of LAr TPCs is DUNE and DUNE would not be there without Carlo!


A nice neutrino event with CC and a stopping proton


Crossing the Atlantic

IcarUS 2014-today

Data Taking

@ FNAL

ICARUS Preliminary

