
Andrea De Vita, Dolores Garcia, Brieuc Francois

Implementation of a pipeline to
evaluate the performance of the GGTF

algorithm for IDEA

4th September 2024

Overview

The track finder described by Dolores (Slide FCC Full Sim Meeting - 7th August) has been
tested on Python, but there is no pipeline that returns a root file that can be used to evaluate
the performance:

1. Implementation of a Track Finding gaudi::functional that returns a track collection
given a collection of hits.

2. Implementation of an evaluation step that returns a quick estimate of tracking
efficiency and a table of parameters to calculate tracking efficiency as a function of
particle properties (such as , etc…).pT θ

1 / 22

https://indico.cern.ch/event/1441999/contributions/6081361/attachments/2908499/5102491/CLD_patternrecognition.pdf

From to Simulation to Evaluation

The complete pipeline consists of several steps:

1. Idea detector simulation (IDEA_o1_v02.xml)

2. Digitizer v01 (moving to Digitizer v02)

3. Generalised geometric track finding algorithm

4. Evaluation step (tracking efficiency)

Complete Pipeline

2 / 22

In the following analysis, we used the digitizer_v01, which describes the drift chamber hits
through two positions, left and right of the wire.

It will then be necessary to switch to digitiser_v02, for which the drift chamber hits are
described by considering all possible positions on the circumference defined by a radius
around the wire.

Digitizer v01 vs Digitizer v02

3 / 22

wire

1. ML step: Track-finding approach based on a graph structure of inputs, on which
geometric algebra transformations are applied. The final output is a set of pairs (beta,
coordinates). Beta is a scalar used to define a potential that attracts results belonging to
the same tracks and rejects those belonging to different tracks.

2. Clustering step: From the clusters in the embedding space, tracks can be obtained
using the HDBSCAN or DBSCAN clustering algorithm.

Generalised geometric track finding algorithm

4 / 22

The GGTF algorithm is implemented within the gaudi framework using a
k4FWCore::MultiTransformer.

A transformer / MultiTransformer is an example of gaudi::functional, which consists in a
general building block that is multithreading friendly.

• Inputs: digitalised Drift Chamber hits (extension::DriftChamberDigi) and digitalised
Vertex hits (extension::TrackerHit3D)

• Outputs: collection of Tracks (extension::TrackCollection)

Track Finder Implementation

5 / 22

struct GGTF_tracking_dbscan final : k4FWCore::MultiTransformer< std::tuple<TrackColl>(
const DCHitColl&
const VertexHitsColl&
const VertexHitsColl&
const VertexHitsColl&)>

{
 GGTF_tracking_dbscan(const std::string& name, ISvcLocator* svcLoc) : MultiTransformer (name, svcLoc,
 {

 KeyValues("inputHits_CDC", {"inputHits_CDC"}),
 KeyValues("inputHits_VTXIB", {"inputHits_VTXIB"}),
 KeyValues("inputHits_VTXD", {"inputHits_VTXD"}),
 KeyValues("inputHits_VTXOB", {"inputHits_VTXOB"})

 },
 {
 KeyValues("outputTracks", {"outputTracks"})

 }) {}

 StatusCode initialize(){

// CODE
return StatusCode::SUCCESS;}

 std::tuple< <INSERT OUTPUTS> > operator()(<INSERT INPUTS>) const override {

 // CODE
 return std::make_tuple(std::move(*output_tracks));}

 private:

 // PROPERTIES
};

Track Finder - General Structure

6 / 22

The first step of the track finder is the execution of the ONNX model.

In order to execute the model, initialize() must be used to create the inference session
(<Ort::Session>) and define its options, such as memory management. Furthermore, during the
initialization phase, the model is imported from the corresponding ONNX file.

Within the execution phase operator(), the model receives as input a tensor containing all hits
and it returns the coordinates (pos, beta) in the embedding space.

Track Finder - ML Implementation

7 / 22

StatusCode initialize() {

 fInfo = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);

 auto envLocal = std::make_unique<Ort::Env>(ORT_LOGGING_LEVEL_WARNING, "ONNX_Runtime");
 fEnv = std::move(envLocal);

 fSessionOptions.SetIntraOpNumThreads(1);
 fSessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_DISABLE_ALL);
 fSessionOptions.DisableMemPattern();

 auto sessionLocal = std::make_unique<Ort::Session>(*fEnv, “model.onnx”, fSessionOptions);
 fSession = std::move(sessionLocal);

 Ort::AllocatorWithDefaultOptions allocator;
 const auto input_name = fSession->GetInputNameAllocated(0, allocator).release();
 const auto output_names = fSession->GetOutputNameAllocated(0, allocator).release();

 fInames.push_back(input_name);
 fOnames.push_back(output_names);

 return StatusCode::SUCCESS;

}

auto output_model_tensors = fSession->Run(Ort::RunOptions{nullptr},
fInames.data(), input_tensors.data(), fInames.size(), fOnames.data(), fOnames.size());

Track Finder - ML Implementation

The second step of the track finder consists of the clustering
algorithm, which is implemented with DBSCAN (Github Repository
by Eleobert).

DBSCAN uses a definition of clusters based on the notion of density: if a point has a minimum
number of points (min_points) within a certain epsilon distance (), it is classified as a core
point. If a point is not a core point and it is not close to a core point, then it is classified as
noise.

Starting with the core points, the clusters are expanded until all points are classified as noise
or belonging to a cluster.

ϵ

Track Finder - Clustering

9 / 22

https://github.com/Eleobert/dbscan
https://github.com/Eleobert/dbscan

Results
Track finder - OutputFile

10 / 22

Results
Track finder - ddism behaviour

If we use the ddism command without any cut on the
kinetic energy, what we get is that some hits are not
assigned to the original particle.

If we add a cutoff to the kinetic energy, such as
SIM.part.minimalKineticEnergy “0.001*MeV”, we
obtain a correct classification of the hits, but hits in-
between tracks are also assigned to other particles,
which makes the definition of purity non-trivial.

11 / 22

Results
Track finder - processing time

12 / 22

The tracker can only be used for events that contain less than 20000 hits, as otherwise there is
excessive memory consumption (Out of Memory - OOM). Possible solutions are the use of
machines with more available resources or the use of gpu even in the inference phase.

Sometimes the datatype extension::TrackerHit causes a segmentation violation when trying
to access the hits saved in the output file.

Track Finder - Issues

13 / 22

Introduction

It is important to find a definition of tracking efficiency that is consistent with the design of the
detector.

IDEA is based on a tracker with drift chambers and vertex detectors. For this reason, the
number of hits is considerably higher than in CLD, since the drift chamber contributes
significantly to this number.

By analogy of design, the definition proposed by BELLE II is chosen, for which a particle is
assigned to a track depending on purity and efficiency values.

Moreover, the number of particles being considered is reduced through cuts on certain
properties of the MC particles.

Tracking Efficiency

14 / 22

A particle is defined as reconstructable if it satisfies the following conditions (these thresholds
can be tuned in the steering file):

1.

2.

3. Number of unique hits (Drift Chamber + Vertex) > 15

4. Number of Drift Chamber hits > 4

5. Generator Status == 1

6. Vertex < 50 mm

pT > 100 MeV

cos(θ) < 0.99

Tracking Efficiency - Step 1
Reconstructable particles

15 / 22

Purity and efficiency - Assigned particles

Given a particle p and a track t, it is possible to define two quantities known as purity and
efficiency:

A particle p is assigned to the track t if and

PurTRACKt
MCp

=
num of hits from MCp in TRACKt

num of hits of TRACKt

Eff MCp
TRACKt

=
num of hits from TRACKt in MCp

num of hits of MCp

PurTRACKt
MCp

> 0.5 Eff MCp
TRACKt

> 0.5

Tracking Efficiency - Step 2

16 / 22

Tracking efficiency and Fake Tracks

Tracks with no assigned particles are considered fake tracks.

Particles that are assigned but are not reconstructable may indicate that it is possible to relax
the definition of “reconstructable”.

Tracking efficiency =
number of reconstructable and assigned particles

number of reconstructable particles

Tracking Efficiency - Step 3

17 / 22

Evaluation Implementation

The GGTF evaluation step is implemented within the gaudi framework using a
k4FWCore::MultiTransformer.

• Inputs:

1. Track collection (extension::TrackCollection)

2. simHits (edm4hep::SimTrackerHitCollection)

3. MC particle collection (edm4hep::MCParticleCollection)

• Outputs: table of features (see structure in the next slide) and number of fakes

18 / 22

Table of Features
Structure

• Assigned_track: index of the track which the particle has been assigned to (0 if not assigned)

• isReconstructable: boolean value which is 1 if the particle is reconstructable and 0 otherwise

• isAssigned: boolean value which is 1 if the particle is assigned and 0 otherwise

• Purity: purity of the track which the particle has been assigned to (-1 if not assigned)

• Efficiency: efficiency of the particle with respect to the track which the particle has been assigned to (-1
if not assigned)

19 / 22

Evaluation - General Structure
struct GGTF_efficiency final :
 k4FWCore::MultiTransformer<std::tuple< <INSERT OUTPUTS > >(<INSERT OUTPUTS >)>
{
 GGTF_efficiency(const std::string& name, ISvcLocator* svcLoc) :
 MultiTransformer (name, svcLoc,
 {

 KeyValues("InputCollectionTracks", {"inputTracks"}),
 KeyValues("InputCollectionParticles", {"inputMCparticles"}),
 KeyValues("inputHits_DC_sim", {"inputHits_DC_sim"}),
 KeyValues("inputHits_VTXIB_sim", {"inputHits_VTXIB_sim"}),
 KeyValues("inputHits_VTXD_sim", {"inputHits_VTXD_sim"}),
 KeyValues("inputHits_VTXOB_sim", {"inputHits_VTXOB_sim"})

 },
 {
 KeyValues("out_costheta", {"out_costheta"}),
 KeyValues("out_pt", {"out_pt"}),
 KeyValues("out_phi", {"out_phi"}),
 KeyValues("out_vertex", {"out_vertex"}),
 KeyValues("out_pdg", {"out_pdg"}),
 KeyValues("out_num_hits", {"out_num_hits"}),
 KeyValues("out_num_hits_driftChamber", {"out_num_hits_driftChamber"}),
 KeyValues("out_pur", {"out_pur"}),
 KeyValues("out_eff", {"out_eff"}),
 KeyValues("assigned_track_mc", {"assigned_track_mc"}),
 KeyValues("numberFakes", {"numberFakes"}),
 KeyValues("genStatus", {"genStatus"}),
 KeyValues("isReconstructable", {"isReconstructable"}),
 KeyValues("isAssigned", {"isAssigned"}),
 KeyValues("isRecoAndAssigned", {"isRecoAndAssigned"})

 }) {}

 std::tuple< <INSERT OUTPUTS > > operator()(<INSERT INPUTS >) const override
 {
 // CODE
 }

 private:

 // PROPERTIES
};

20 / 22

Results
Performance for complex events - Python vs C++

21 / 22

Z/γ* → qq̄ (q = u, d)

What’s next

22 / 22

A pipeline is currently available, but there are some open problems:

1. A Track finder gaudi::functional is available for events with less than 20000 hits

2. Object within namespace “extension” have problems when writing to the rootfile, as reading the
content causes segfault errors.

3. There is a difference in the performance of the ML model between inference with C++ and
inference with Python. This is probably due to the way float and double are treated in C++ and
Python (see open question on StackOverflow).

4. It is necessary to reduce the processing time of the model through a reduced model and / or
through some optimisations.

https://stackoverflow.com/questions/77738595/different-result-on-using-onnxruntime-c-and-python

