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» Take a complex scalar field theory

S = |atx (-0, 00 - vig' )

. Invariant under ¢ — ¢@e™®. Usual global U(1) symmetry.
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 Through the Noether procedure

j =1 |(0"9N)p — PT(0"P)|
« Conservation law

0" =0
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« Can define

0 = de3j0 s.t. 0=0
» The picture

+ o | +
2 charges = fixed | e 1o lime o7
_ e —
O 9 !
o O



Warmup: Symmetry Operators




Warmup: Symmetry Operators

. Construct manifold 2. of codimension 1 (3D manifold in 4D
spacetime)



Warmup: Symmetry Operators

. Construct manifold 2. of codimension 1 (3D manifold in 4D
spacetime)

« Symmetry defect operator is then



Warmup: Symmetry Operators

. Construct manifold 2. of codimension 1 (3D manifold in 4D
spacetime)

« Symmetry defect operator is then

UCZ, a) = exp iaJ T Symmetry Defect Operator
| > (SDO)
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Warmup: The Picture

- Defect operator acts on pointlike operator ¢(x) with charge g

eiaq % q‘

U(Z, a)
» Topological: cannot be shrunk to a point without passing through
pointlike operator.

- Follows group multiplication rule: U(Z, a)U(Z, ) = U(Z,a+ p) °
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* The basic idea: Generalize!
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- Maxwell Theory has action
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4g°

- and has two one-form symmetries in 4D
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Maxwell Theory

- Maxwell Theory has action

S = [d“x (—LF F””)
42 *

- and has two one-form symmetries in 4D

p-form symmetry
current has (p+1)
Indices.

Electric

J'éw=?F”” o =
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Maxwell Conservation

Electric Magnetic
a‘/ﬂ/—iaFﬂV—O a’ﬂ’/—iaﬁ’ﬂ”—o
Iu]é Tyl Bl /,t.]m S 0T B
s s
Conserved by EoM Conserved by Bianchi Identity

Can be broken by electrically/magnetically
charged matter and new operators in action.
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Maxwell Symmetry Action

. Electric one-form symmetry shifts A by a flat

connection

A, —A+A, w/ J dx*A, =2zR  and o, Ay =0
Y
 Equivalent to shifting a Wilson loop by arbitrary

phase

Wiyl = exp(iq[ dtA) — Wly| exp (iq2m )
y
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Maxwell Topology

« Can construct SDO

UZ, )
C_ D UZ, )
U(Z,ax) = exp [ia[ Je/m] | = C D
2 —
. 2 is dimension 2 in 4D. Wiy) exp (iga) Wy

« Acts on Wilson/’t Hooft lines via
linking. (a) (b)
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What is measured?

» Measures electric/magnetic flux

« Broken Iff. flux lines can be sourced

Symmetry Intact Symmet[y Broken
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The Open Question

Are generalized symmetries useful for
phenomenology/BSM physics?
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The “Standard’ Axion

» The standard (KSVZ/DFSZ) axion is the phase of a
complex scalar

b= |ple”

» Axion Is goldstone boson associated with spontaneous
global U(1)p, symmetry breaking. Leads to

2

6’Ga GAHY 4
3272

LR = - —fz(a 0)% +f ==
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Axions In the IR

. GG generates potential via instantonic effects
% L 20000 — AL [1 0
D_Ef u — Agepl|l —cos 6

 Solves Strong CP Problem*
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* The Quality Problem

» Axion Is goldstone boson associated with spontaneous global
U(1) PQ symmetry breaking.

* PQ symmetry could easily be accidental in the IR — by the No
Global Symmetries conjecture, PQ must be broken in the UV.
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A Quality Violating Example

» For example, take operator

@"+h.c. wl ¢ =|cle'?

- Then, expanding around ¢’s VEV

f n
V(0) = 2\c\Mf}1 ( COS (n6’ + qﬂ)
)
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How big of a problem?

V(0) = 2\0|Mf}1 ( ) COS (n6’ + go)

V2Mp,
. For Oycp < 10~'°, need to suppress operators up to n > 14 for

f~ 10" GeV.

» Has been tested for a few specific UV completions; swampland
makes clear that we should worry in general.
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Solution: Extra-Dimensional Axions

» Motivated by string theory compactifications and solving the
quality problem.

. Suppose we live on a spacetime manifold R % S Introduce
new 5D U(1) gauge field C with action

oHC? — d"CH
5D _ J' 1 A/N

ehPrC T [G G ]
42 3272 wweer

| N
=[ F/\*F+—C/\Tr[G/\G]
282, 812
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Axion as Zero-Mode

. The axion is the zero-mode of C along the circle

27R
0 = J dx> Cs(x, x°) = J C
0 A\

. 27t shift symmetry automatic
xa y9 Za t
» AXxion decay constant is
1
]['
85 27TR
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The Old Argument

- “Gauge Symmetry Protects the Axion Potential”

» ldea: Can (almost) only write operators in UV consisting of field
strengths, so e.g. no ¢6, only F> and similar operators.
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Why This is Not Satisfactory

» Gauge symmetry is not even a physical symmetry.

* Does not tell you about where the potential protection fail:
has no instructive power.
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What really protects the potential?

» |t’s the electric one-form symmetry

1 1
JW = —FHW = —gHcYl 0 J=dJ =0 — Symmetry Unbroken
€ 9 2 H € €
85 85
» Upon dimensional reduction

@ /11

Electric one-form Real Number Shift Symmetry of 0
—_—

symmetry of C
Electric one-form

symmetry of C,,

27
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Seeing the shift symmetry

. Like Maxwell, one-form symmetry shifts C by a flat connection

C,—C,+A, W J dx*A, = 27R and Oldy) =
y

* Plug into definition of extra-dimensional axion

0 = { dx°Cs — J dx> (C5 + A5) = J dx>Cs +[ dx°As = 0 + 2xl
S! S! S! S!
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The Crucial Fact

» To generate axion potential, must break electric one-form symmetry.
 Higher-form symmetries are “harder to break™.

» Formal meaning of this via mean string field theory™.

*Igbal & McGreavy: Mean string field theory: Landau-
Ginzburg theory for 1-form symmetries.

» You will see this via practical examples.

29
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What can we do to the symmetry?

. As long as dJ, = 0, the axion is massless.

* Now the fun part: let’'s modify it in as many ways as we can!

» Types of symmetry modification:
» Breaking by electrically charged matter
» Breaking by gauged magnetic symmetry
* Direct gauging
» Breaking by ABJ anomaly term New 5D
- Breaking by monopoles < Mechanism

31
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Electrically Charged Matter

- Suppose a particle has electric charge g under C.

d]e :jmatter -
» Wrap worldline around cylinder. H
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Symmetry Picture

« Creation/annihilation

operators of the new field ; C_

can “completely screen”
Wilson lines of charge Zgq.
Wly]
. Breaks U(1) one-form
symmetry down to Z ;

one-form symmetry. (2)

UZ, a)

Wly]

(b)
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Gauging MagneticTwo-Form

. Magnetic symmetry is 2-form in 5D since j*** = e/Y*P1F P
. Suppose | add a three-form field K/wp

5D _LJ ﬂl
5D dK A xdK + KAF
ez AT

dJ = —dK, breaks U(l) —» 7,
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Gauging MagneticTwo-Form

. Upon dimensional reduction, the part of K coupling to € remains
a 3-form.

» 3-forms have no DoF in 4D - Coupling becomes quadratic

mass term. Solving EoM vyields

M

Mg = 2_ﬂg4 €K 4

» Monodromatic: technically invariant under 0 — 60 + 2z/M.
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Gauging Electric One-Form

. Suppose | add two-form field B/w

]
$°D 5 —FJdB/\*dB — k[BA*F
€B

. Not gauge invariant under B - B + dA, C — C + A. Must be
embedded in Stueckelberg-like action

| |
P 5 — —JdB A *xdB — —J(dC— kB) A\ % (dC — kB)
2es 282
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Gauging Electric One-Form

- Upon dimensional reduction, the relevant surviving part of B is a
one-form gauge field Aﬂ =B s

» Resultant 4D action is standard Stueckelberg

S4D:)—

J'dA A *dA — LJ'(dH — kA) A % (df — kA)

2e 4 287

- Axion gets eaten
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Anomaly-Like Term

. Suppose | add an SU(3) gluon field w/ field strength G

P> J—LTr G A %G| ——C/\Tr GAG,
28¢

. EoM is dJ, « Tr |G A G|. Like ABJ anomaly.

» This is just the usual gluon potential after dimensional reduction.
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The Takeaway

Potential generation for the extra-dimensional
axion can be understood systematically via all
the ways of breaking/gauging the electric one-
form symmetry
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What about other new contributions?

. Suppose we have a separate gauge field A with field strength
F2 and coupling
|
P 5 wJC/\FA/\FA — dJ, x FAAFA
T
. No U(1) instantons, so where is the potential?

* |t has been shown that monopole loops in 4D yield axion

pote ntial contributions. “Axion Mass From Magnetic Monopole Loops” Fan,

Fraser, Reece, Stout.
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5D: Closed worldsheets

* In 5D, the entire worldsheet must wrap itself o M=
to generate a potential \'
1 T |
Sworldline = —Em—%/J'dAG/\ *dA0+2—ﬂJ'C/\dA6 —

» Computing wrapped extremized action yields

o P22, 2 )
V(0) = — Z . TMmWe“‘”z”ﬂ RIvlmw cos(£0) x | 1 + _OMw + My
— 8nt? An*CRTy  167*C°R*Ty; )
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» Work in prep. with Ken Van Tilburg & Isabel Garcia Garcia

Relaxed Magnetic field xz plane Relaxed Action Density in zt
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Main Takeaways

 The masslessness of the extra-dimensional axion in the IR Is
protected by a one-form U(1) electric symmetry in the UV.

- Higher-form symmetries are “harder to break™ and protect the
quality of the axion potential (unlike PQ axions).

. All ways of generating a potential < all ways of breaking U(l)gl).

* Interesting interplay between electric and magnetic sector: stay
tuned for future work! 3



