

High-Quality Axions from Higher-Form Symmetries in Extra Dimensions

Marius Kongsore (NYU) w/ Nathaniel Craig (UCSB/KITP)

NYU

arXiv:2408.10295

09.26.24

PART I: Higher-form Symmetries

PART I: Higher-form Symmetries

PART II: The Axion and the Quality Problem

- PART I: Higher-form Symmetries
- PART II: The Axion and the Quality Problem

PART III: The Extra-Dimensional Axion and its Symmetries

- PART I: Higher-form Symmetries
- PART II: The Axion and the Quality Problem
- PART IV: Breaking the Symmetries

PART III: The Extra-Dimensional Axion and its Symmetries

Part I Higher-Form Symmetries

Take a complex scalar field theory

Take a complex scalar field theory

$$S = \int \mathrm{d}^4 x \left(-(\partial_\mu \theta) \right) d^4 x \left(-(\partial_\mu \theta) \right$$

 $_{\iota}\phi)^{\dagger}\partial^{\mu}\phi - V(\phi^{\dagger}\phi)$

Take a complex scalar field theory

$$S = \int \mathrm{d}^4 x \left(-(\partial_\mu) \right)^2 d^4 x \left(-(\partial_\mu) \right)^$$

• Invariant under $\phi \rightarrow \phi e^{i\alpha}$. Usual global U(1) symmetry.

 $(\phi)^{\dagger} \partial^{\mu} \phi - V(\phi^{\dagger} \phi)$

Through the Noether procedure

Through the Noether procedure

$j^{\mu} = i \left[(\partial^{\mu} \phi^{\dagger}) \phi - \phi^{\dagger} (\partial^{\mu} \phi) \right]$

Through the Noether procedure

Conservation law

$j^{\mu} = i \left[(\partial^{\mu} \phi^{\dagger}) \phi - \phi^{\dagger} (\partial^{\mu} \phi) \right]$

Through the Noether procedure

Conservation law

$j^{\mu} = i \left[(\partial^{\mu} \phi^{\dagger}) \phi - \phi^{\dagger} (\partial^{\mu} \phi) \right]$

$\partial_{\mu}j^{\mu} = 0$

Can define

Can define

 $Q = \int \mathrm{d}x^3 j^0$

Can define

 $Q = \left[\mathrm{d}x^3 j^0 \quad \text{s.t.} \quad \dot{Q} = 0 \right]$

Can define

• The picture

$Q = \left| \mathrm{d}x^3 j^0 \quad \text{s.t.} \quad \dot{Q} = 0 \right|$

Can define

• The picture

$Q = \begin{bmatrix} \mathrm{d}x^3 j^0 & \mathrm{s.t.} & \dot{Q} = 0 \end{bmatrix}$

Can define

• The picture

$\sum \text{charges} = \text{fixed} \qquad \P^+ \bullet^{t_0}$

$Q = \left| \mathrm{d} x^3 j^0 - \mathrm{s.t.} \right| \dot{Q} = 0$

Can define

• The picture

$Q = \left| \mathrm{d} x^3 j^0 \quad \text{s.t.} \quad \dot{Q} = 0 \right|$

- Construct manifold Σ of codimension 1 (3D manifold in 4D) spacetime)

- Construct manifold Σ of codimension 1 (3D manifold in 4D spacetime)
- Symmetry defect operator is then

- Construct manifold Σ of codimension 1 (3D manifold in 4D spacetime)
- Symmetry defect operator is then

 $U(\Sigma, \alpha) \equiv \exp\left(i\alpha \left(J \right) \right)$ Symmetry Defect Operator J_{Σ}

(SDO)

• Defect operator acts on pointlike operator $\phi(x)$ with charge q

• Defect operator acts on pointlike operator $\phi(x)$ with charge q

• Defect operator acts on pointlike operator $\phi(x)$ with charge q

• Topological: cannot be shrunk to a point without passing through pointlike operator.

 $e^{i\alpha q} \times \overset{q}{\bullet}$

• Defect operator acts on pointlike operator $\phi(x)$ with charge q

- Topological: cannot be shrunk to a point without passing through pointlike operator.

 $e^{i\alpha q} \times \overset{\mathbf{y}}{\bullet}$

• Follows group multiplication rule: $U(\Sigma, \alpha)U(\Sigma, \beta) = U(\Sigma, \alpha + \beta)^*$

Higher-Form Symmetries

Higher-Form Symmetries

The basic idea: Generalize!

Properties of	Ordinary	Higher-form	Non-invertible	Subsystem
symmetry operator	symmetry	symmetry	symmetry	symmetry
Codimension	1	> 1	≥ 1	> 1
in spacetime				
Topological	yes	yes	yes	not completely
				but conserved in ti
Fusion rule	group	group	category	group

*Cordova, Dumitrescu, Intriligator, Shao: Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond

Higher-Form Symmetries This talk Non-invertible er-form Subsystem symmetry symmet nmetry > 1 ot completely yes yes but conserved in time celegory roup group

The basic idea: Generalized

Properties of		High			
symmetry operator		sym			
	1				
	yes				
	group	gı			
	or	or Ordinary symmetry 1 yes group			

*Cordova, Dumitrescu, Intringator, Sheer Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond

Maxwell Theory has action

Maxwell Theory has action

Maxwell Theory has action

$$S = \int d^4x$$

and has two one-form symmetries in 4D

Maxwell Theory has action

$$S = \int d^4 x$$

 and has two one-form symmetries in 4D Electric

$$j_e^{\mu\nu} = \frac{1}{g^2} F^{\mu\nu}$$

Maxwell Theory has action

$$S = \int d^4 x$$

 and has two one-form symmetries in 4D Electric

$$j_e^{\mu\nu} = \frac{1}{g^2} F^{\mu\nu}$$

Magnetic

 $j_m^{\mu\nu} = \frac{1}{2\pi} \epsilon^{\mu\nu\alpha\beta} F_{\alpha\beta} = \frac{1}{2\pi} \tilde{F}^{\mu\nu}$

Maxwell Theory has action

$$S = \int d^4 x$$

and has two one-form symmetries in 4D
 Electric

$$j_e^{\mu\nu} = \frac{1}{g^2} F^{\mu\nu}$$

Electric

Magnetic

Electric

Magnetic

Electric

Conserved by EoM

Magnetic

Electric

Conserved by EoM

$\frac{\text{Magnetic}}{\partial_{\mu}j_{m}^{\mu\nu}} = \frac{1}{g^{2}}\partial_{\mu}\tilde{F}^{\mu\nu} = 0$

Electric

Conserved by EoM

$\frac{\text{Magnetic}}{\partial_{\mu}j_{m}^{\mu\nu}} = \frac{1}{g^{2}}\partial_{\mu}\tilde{F}^{\mu\nu} = 0$

Conserved by Bianchi Identity

Electric

Conserved by EoM

Can be broken by electrically/magnetically charged matter and new operators in action.

$\frac{\text{Magnetic}}{\partial_{\mu}j_{m}^{\mu\nu}} = \frac{1}{g^{2}}\partial_{\mu}\tilde{F}^{\mu\nu} = 0$

Conserved by Bianchi Identity

Maxwell Symmetry Action

Maxwell Symmetry Action Electric one-form symmetry shifts A by a *flat*

connection

Maxwell Symmetry Action • Electric one-form symmetry shifts A by a *flat* connection

 $A_{\mu} \to A_{\mu} + \Lambda_{\mu} \quad \text{w/} \quad \int_{\mathcal{X}} dx^{\mu} \Lambda_{\mu} = 2\pi \mathbb{R} \quad \text{and} \quad \partial_{[\mu} \Lambda_{\nu]} = 0$

Maxwell Symmetry Action • Electric one-form symmetry shifts A by a flat connection

 $A_{\mu} \to A_{\mu} + \Lambda_{\mu} \quad \text{w/} \quad \int_{\mathcal{V}} \mathrm{d}x^{\mu} \Lambda_{\mu} = 2\pi \mathbb{R} \quad \text{and} \quad \partial_{[\mu} \Lambda_{\nu]} = 0$

Maxwell Symmetry Action Electric one-form symmetry shifts A by a *flat*

connection

$$A_{\mu} \to A_{\mu} + \Lambda_{\mu} \quad \text{w/} \quad \int_{\gamma} \mathrm{d}x^{\mu} \Lambda_{\mu}$$

- Equivalent to shifting a Wilson loop by arbitrary phase
- $= 2\pi \mathbb{R} \quad \text{and} \quad \partial_{[\mu} \Lambda_{\nu]} = 0$

Maxwell Symmetry Action Electric one-form symmetry shifts A by a *flat*

connection

$$A_{\mu} \to A_{\mu} + \Lambda_{\mu} \quad \text{w/} \quad \int_{\gamma} \mathrm{d}x^{\mu} \Lambda_{\mu}$$

Equivalent to shifting a Wilson loop by arbitrary phase

$$W[\gamma] = \exp(iq \int_{\gamma} d\tau A_{\tau}) \to W[\gamma]$$

 $= 2\pi \mathbb{R} \quad \text{and} \quad \partial_{[\mu} \Lambda_{\nu]} = 0$

Can construct SDO

Can construct SDO

$$U(\Sigma, \alpha) = \exp\left[i\alpha \int_{\Sigma} J_{e/m}\right]$$

Can construct SDO

$$U(\Sigma, \alpha) = \exp\left[i\alpha \int_{\Sigma} J_{e/m}\right]$$

• Σ is dimension 2 in 4D.

Can construct SDO

$$U(\Sigma, \alpha) = \exp\left[i\alpha \int_{\Sigma} J_{e/m}\right]$$

- Σ is dimension 2 in 4D.
- Acts on Wilson/'t Hooft lines via linking.

Can construct SDO

$$U(\Sigma, \alpha) = \exp\left[i\alpha \int_{\Sigma} J_{e/m}\right]$$

- Σ is dimension 2 in 4D.
- Acts on Wilson/'t Hooft lines via linking.

 $U(\Sigma, \alpha)$

 $\exp(iq\alpha)W[\gamma]$

*Brennan & Hong: Introduction to Generalized Global Symmetries in QFT and Particle Physics

(b)

What is measured?

What is measured?

- Measures electric/magnetic flux
- Broken iff. flux lines can be sourced

What is measured?

- Measures electric/magnetic flux
- Broken iff. flux lines can be sourced

<u>Symmetry Intact</u>

Symmetry Broken

The Open Question

The Open Question

Are generalized symmetries useful for phenomenology/BSM physics?

Axions and the Quality Problem

 The standard (KSVZ/DFSZ) axion is the phase of a complex scalar

- The standard (KSVZ/DFSZ) axion is the phase of a complex scalar
 - $\phi = |\phi|e^{i\theta}$

 The standard (KSVZ/DFSZ) axion is the phase of a complex scalar

 Axion is goldstone boson associated with spontaneous global $U(1)_{PO}$ symmetry breaking. Leads to

- $\phi = |\phi| e^{i\theta}$

 The standard (KSVZ/DFSZ) axion is the phase of a complex scalar

 Axion is goldstone boson associated with spontaneous global $U(1)_{PO}$ symmetry breaking. Leads to

- $\phi = |\phi| e^{i\theta}$

$$\mathscr{L}_{\rm IR} = -\frac{1}{2} f^2 (\partial_\mu \theta)^2 + f \frac{g^2}{32\pi^2} \theta G^a_{\mu\nu} \tilde{G}^{a\,\mu\nu} + \dots$$

• GG generates potential via instantonic effects

• GG generates potential via instantonic effects

 $\mathscr{L} \supset -\frac{1}{2} f^2 \partial_{\mu} \theta \ \partial^{\mu} \theta - \Lambda_{\rm QCD}^4 \left[1 - \cos \theta\right]$

*Shifman: Advanced Topics in Quantum Field Theory

• GG generates potential via instantonic effects

 $\mathscr{L} \supset -\frac{1}{2} f^2 \partial_{\mu} \theta \ \partial^{\mu} \theta - \Lambda_{\rm QCD}^4 \left[1 - \cos \theta\right]$

Solves Strong CP Problem*

*Shitman: Advanced Topics in Quantum Field Theory

* The Quality Problem

* The Quality Problem

 Axion is goldstone boson ass U(1) PQ symmetry breaking.

Axion is goldstone boson associated with spontaneous global

* The Quality Problem

- Axion is goldstone boson associated with spontaneous global U(1) PQ symmetry breaking.
- PQ symmetry could easily be accidental in the IR by the No Global Symmetries conjecture, PQ must be broken in the UV.

• For example, take operator

• For example, take operator

• For example, take operator

• Then, expanding around ϕ 's VEV

w/ $c = |c|e^{i\varphi}$

For example, take operator

• Then, expanding around ϕ 's VEV

 $w/ c = |c|e^{i\varphi}$

 $V(\theta) = 2|c|M_{\rm Pl}^4 \left(\frac{f}{\sqrt{2}M_{\rm Pl}}\right)^n \cos\left(n\theta + \varphi\right)$

How big of a problem?

How big of a problem?

 $V(\theta) = 2|c|M_{\rm Pl}^4 \left(\frac{f}{\sqrt{2}M_{\rm Pl}}\right)^n \cos\left(n\theta + \varphi\right)$

How big of a problem? $V(\theta) = 2|c|M_{\rm Pl}^4 \left(\frac{f}{\sqrt{2}M_{\rm Pl}}\right)^n \cos\left(n\theta + \varphi\right)$ • For $\theta_{\rm OCD} < 10^{-10}$, need to suppress operators up to $n \ge 14$ for $f \simeq 10^{12} \,\mathrm{GeV}.$

How big of a problem? $V(\theta) = 2|c|M_{\rm Pl}^4 \left(\frac{f}{\sqrt{2}M_{\rm D1}}\right)^n \cos\left(n\theta + \varphi\right)$ • For $\theta_{\rm OCD} < 10^{-10}$, need to suppress operators up to $n \ge 14$ for

makes clear that we should worry in general.

 $f \simeq 10^{12} \,\mathrm{GeV}.$

Has been tested for a few specific UV completions; swampland

The Extra-Dimensional Axion and its Symmetries

Part III

Solution: Extra-Dimensional Axions

Solution: Extra-Dimensional Axions

 Motivated by string theory con quality problem.

Motivated by string theory compactifications and solving the

Solution: Extra-Dimensional Axions Motivated by string theory compactifications and solving the

- quality problem.
- new 5D U(1) gauge field C with action

• Suppose we live on a spacetime manifold $\mathbb{R}^{1,3} \times S^1$. Introduce

Solution: Extra-Dimensional Axions Motivated by string theory compactifications and solving the

- quality problem.
- Suppose we live on a spacetime manifold $\mathbb{R}^{1,3} \times S^1$. Introduce new 5D U(1) gauge field C with action $\partial^{\mu}C^{\nu} - \partial^{\nu}C^{\mu}$ $F^{\mu\nu} + \frac{N}{32\pi^2} \epsilon^{\mu\nu\rho\sigma\gamma} C_{\mu} \text{Tr} \left[G_{\nu\rho} G_{\sigma\gamma} \right]$ S

$$^{5\mathrm{D}} = \int -\frac{1}{4g_{5\mathrm{D}}^2} F_{\mu\nu} F_{\mu\nu}$$

Solution: Extra-Dimensional Axions Motivated by string theory compactifications and solving the

- quality problem.
- Suppose we live on a spacetime manifold $\mathbb{R}^{1,3} \times S^1$. Introduce new 5D U(1) gauge field C with action $\partial^{\mu}C^{\nu} - \partial^{\nu}C^{\mu}$ $\frac{N}{32\pi^2}\epsilon^{\mu\nu\rho\sigma\gamma}C_{\mu}\mathrm{Tr}\left[G_{\nu\rho}G_{\sigma\gamma}\right]$

$$S^{5D} = \int -\frac{1}{4g_{5D}^2} F_{\mu\nu} F_{\mu\nu}$$

 $\star F + \frac{N}{8\pi^2} C \wedge \operatorname{Tr} \left[G \wedge G \right]$

$$\theta \equiv \int_{0}^{2\pi R} \mathrm{d}x^{5} \ C_{5}(x, x^{5}) = \int_{S^{1}} C$$

$$\theta \equiv \int_{0}^{2\pi R} \mathrm{d}x^{5} \ C_{5}(x, x^{5}) = \int_{S^{1}} C$$

• The axion is the zero-mode of C along the circle

$$\theta \equiv \int_{0}^{2\pi R} \mathrm{d}x^{5} \ C_{5}(x, x^{5}) = \int_{S^{1}} C$$

• 2π shift symmetry automatic

$$\theta \equiv \int_{0}^{2\pi R} \mathrm{d}x^{5} \ C_{5}(x, x^{5}) = \int_{S^{1}} C$$

- 2π shift symmetry automatic
- Axion decay constant is

$$f \equiv \frac{1}{g_5 \sqrt{2\pi R}}$$

The Old Argument

The Old Argument

"Gauge Symmetry Protects the Axion Potential"

The Old Argument "Gauge Symmetry Protects the Axion Potential"

• Idea: Can (almost) only write operators in UV consisting of field strengths, so e.g. no ϕ^6 , only F^3 and similar operators.

Why This is Not Satisfactory

Why This is Not Satisfactory

Gauge symmetry is not even a physical symmetry.

Why This is Not Satisfactory

- Gauge symmetry is not even a physical symmetry.
- Does not tell you about where the potential protection fail: has no instructive power.

What really protects the potential?

What really protects the potential?

It's the electric one-form symmetry

It's the electric one-form symmetry

$$J_e^{\mu\nu} = \frac{1}{g_5^2} F^{\mu\nu} = \frac{1}{g_5^2} \partial^{[\mu} C^{\nu]} \qquad o$$

 $\partial_{\mu} J_e^{\mu\nu} = dJ_e = 0 \implies \text{Symmetry Unbroken}$

It's the electric one-form symmetry

$$J_e^{\mu\nu} = \frac{1}{g_5^2} F^{\mu\nu} = \frac{1}{g_5^2} \partial^{[\mu} C^{\nu]} \qquad 0$$

Upon dimensional reduction

 $\partial_{\mu} J_e^{\mu\nu} = dJ_e = 0 \implies \text{Symmetry Unbroken}$

It's the electric one-form symmetry

$$J_e^{\mu\nu} = \frac{1}{g_5^2} F^{\mu\nu} = \frac{1}{g_5^2} \partial^{[\mu} C^{\nu]} \qquad 0$$

Upon dimensional reduction

5U

Electric one-form symmetry of C

 $\partial_{\mu}J_{e}^{\mu\nu} = \mathrm{d}J_{e} = 0 \rightarrow \mathrm{Symmetry}\,\mathrm{Unbroken}$

It's the electric one-form symmetry

$$J_e^{\mu\nu} = \frac{1}{g_5^2} F^{\mu\nu} = \frac{1}{g_5^2} \partial^{[\mu} C^{\nu]} \qquad 0$$

Upon dimensional reduction

51

Electric one-form symmetry of C

 $\partial_{\mu} J_e^{\mu\nu} = dJ_e = 0 \implies \text{Symmetry Unbroken}$

Real Number Shift Symmetry of θ **Electric one-form** symmetry of C_{4D}

It's the electric one-form symmetry

$$J_e^{\mu\nu} = \frac{1}{g_5^2} F^{\mu\nu} = \frac{1}{g_5^2} \partial^{[\mu} C^{\nu]} \qquad 0$$

Upon dimensional reduction

51

Electric one-form symmetry of C

$\partial_{\mu} J_e^{\mu\nu} = dJ_e = 0 \rightarrow \text{Symmetry Unbroken}$

Electric one-form symmetry of C_{4D}

• Like Maxwell, one-form symmetry shifts C by a *flat connection*

 $C_{\mu} \to C_{\mu} + \Lambda_{\mu}$ w/ $\int_{\nu} dx^{\mu} \Lambda_{\mu} = 2\pi \mathbb{R}$ and $\partial_{[\mu} \Lambda_{\nu]} = 0$

• Like Maxwell, one-form symmetry shifts C by a *flat connection*

$$C_{\mu} \to C_{\mu} + \Lambda_{\mu} \qquad \text{w/} \int_{\gamma} \mathrm{d}x^{\mu}$$

Plug into definition of extra-dimensional axion

• Like Maxwell, one-form symmetry shifts C by a *flat connection*

$\partial_{[\mu}\Lambda_{\nu]} = 0$ ${}^{\prime}\Lambda_{\mu} = 2\pi\mathbb{R}$ and

$$C_{\mu} \to C_{\mu} + \Lambda_{\mu} \qquad \text{w/} \qquad \int_{\gamma} \mathrm{d}x^{\mu}$$

Plug into definition of extra-dimensional axion

$$\theta = \int_{S^1} dx^5 C_5 \to \int_{S^1} dx^5 \left(C_5 + \Lambda_5 \right) = \int_{S^1} dx^5 C_5 + \int_{S^1} dx^5 \Lambda_5 = \theta + 2\pi \mathbb{R}$$

• Like Maxwell, one-form symmetry shifts C by a *flat connection*

$\partial_{[\mu}\Lambda_{\nu]} = 0$ ${}^{\prime}\Lambda_{\mu} = 2\pi\mathbb{R}$ and

- Higher-form symmetries are "harder to break".

- Higher-form symmetries are "harder to break".
- Formal meaning of this via mean string field theory*.

*Iqbal & McGreavy: Mean string field theory: Landau-**Ginzburg theory for 1–form symmetries.**

- Higher-form symmetries are "harder to break".
- Formal meaning of this via mean string field theory*.
 - *Iqbal & McGreavy: Mean string field theory: Landau-**Ginzburg theory for 1–form symmetries.**
- You will see this via practical examples.

Breaking the One-Form Symmetry

• As long as $dJ_e = 0$, the axion is massless.

- As long as $dJ_{\rho} = 0$, the axion is massless.
- Now the fun part: let's modify it in as many ways as we can!

- As long as $dJ_e = 0$, the axion is massless.
- Now the fun part: let's modify it in as many ways as we can!
- Types of symmetry modification:

- As long as $dJ_e = 0$, the axion is massless.
- Now the fun part: let's modify it in as many ways as we can!
- Types of symmetry modification:
 - Breaking by electrically charged matter
- · rand matta

- As long as $dJ_e = 0$, the axion is massless.
- Now the fun part: let's modify it in as many ways as we can!
- Types of symmetry modification:
 - Breaking by electrically charged matter
 - Breaking by gauged magnetic symmetry

- As long as $dJ_e = 0$, the axion is massless.
- Now the fun part: let's modify it in as many ways as we can!
- Types of symmetry modification:
 - Breaking by electrically charged matter
 - Breaking by gauged magnetic symmetry
 - Direct gauging

- As long as $dJ_e = 0$, the axion is massless.
- Now the fun part: let's modify it in as many ways as we can!
- Types of symmetry modification:
 Broaking by electrically charged matter
 - Breaking by electrically charged matter
 - Breaking by gauged magnetic symmetry
 - Direct gauging
 - Breaking by ABJ anomaly term

geu mailer

- As long as $dJ_e = 0$, the axion is massless.
- Now the fun part: let's modify it in as many ways as we can!
- Types of symmetry modification:
 Broaking by electrically charged matter
 - Breaking by electrically charged matter
 - Breaking by gauged magnetic symmetry
 - Direct gauging
 - Breaking by ABJ anomaly term
 - Breaking by monopoles

geu mailer

- As long as $dJ_{\rho} = 0$, the axion is massless.
- Now the fun part: let's modify it in as many ways as we can!
- Types of symmetry modification:
 - Breaking by electrically charged matter
 - Breaking by gauged magnetic symmetry
 - Direct gauging
 - Breaking by ABJ anomaly term New 5D **Mechanism**
 - Breaking by monopoles

A Symmetry Breaking Scorecard

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter			

• Suppose a particle has electric charge q under C.

$dJ_{\rho} = j_{\text{matter}}$

• Suppose a particle has electric charge q under C.

 $dJ_{\rho} = j_{\text{matter}}$

Wrap worldline around cylinder.

$$S_{\rm E,wordline} = m_{5\rm D} \int_{S^1} \mathrm{d}x^5 + iq \int_{S^1}$$

 $\boldsymbol{\Gamma}$

• Suppose a particle has electric charge q under C.

 $dJ_{\rho} = j_{matter}$

• Wrap worldline around cylinder.

$$S_{\rm E,wordline} = m_{5\rm D} \int_{S^1} \mathrm{d}x^5 + iq \int_{S^1}$$

• Suppose a particle has electric charge q under C.

 $dJ_{\rho} = j_{matter}$

• Wrap worldline around cylinder.

$$S_{\text{E,wordline}} = m_{5\text{D}} \int_{S^1} \mathrm{d}x^5 + iq \int_{S^1}$$

$$\rightarrow V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q\theta)$$

• Creation/annihilation operators of the new field can "completely screen" Wilson lines of charge $\mathbb{Z}q$.

• Creation/annihilation operators of the new field can "completely screen" Wilson lines of charge $\mathbb{Z}q$.

• Creation/annihilation operators of the new field can "completely screen" Wilson lines of charge $\mathbb{Z}q$.

• Breaks U(1) one-form symmetry down to \mathbb{Z}_q one-form symmetry.

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter			

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$\mathrm{d}J_e = j_{\mathrm{matter}}$		

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$dJ_e = j_{matter}$	$\mathbb{Z}_q^{(1)}$	

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$\mathrm{d}J_e = j_{\mathrm{matter}}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$dJ_e = j_{matter}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic			

Gauging MagneticTwo-Form

• Suppose I add a three-form field $K_{\mu\nu\rho}$

• Suppose I add a three-form field $K_{\mu\nu\rho}$

 $S^{5D} \supset -\frac{1}{2e_{F}^{2}} \int dK \wedge \star dK + \frac{M}{2\pi} \int K \wedge F$

- Suppose I add a three-form field $K_{\mu\nu\rho}$
- Yields

 $S^{5D} \supset -\frac{1}{2e_{F}^{2}} \int dK \wedge \star dK + \frac{M}{2\pi} \int K \wedge F$

• Suppose I add a three-form field $K_{\mu\nu\rho}$

 $\mathrm{d}J_e = \frac{-}{2\pi}\mathrm{d}K,$

Yields

 $S^{5D} \supset -\frac{1}{2e_{F}^{2}} \int dK \wedge \star dK + \frac{M}{2\pi} \int K \wedge F$

 $U(1) \rightarrow \mathbb{Z}_M$ breaks

Gauging MagneticTwo-Form

Gauging MagneticTwo-Form

a 3-form.

• Upon dimensional reduction, the part of K coupling to θ remains

Gauging MagneticTwo-Form • Upon dimensional reduction, the part of K coupling to θ remains

a 3-form.

 3-forms have no DoF in 4D → Coupling becomes quadratic mass term. Solving EoM yields

Gauging MagneticTwo-Form • Upon dimensional reduction, the part of K coupling to θ remains

- a 3-form.
- 3-forms have no DoF in 4D \rightarrow Coupling becomes quadratic mass term. Solving EoM yields
 - \boldsymbol{M} $m_{\theta} = \frac{1}{2\pi} g_4 e_{K,4}$

Gauging MagneticTwo-Form • Upon dimensional reduction, the part of K coupling to θ remains

a 3-form.

- 3-forms have no DoF in 4D \rightarrow Coupling becomes quadratic mass term. Solving EoM yields \boldsymbol{M} $m_{\theta} = \frac{1}{2\pi} g_4 e_{K,4}$
- Monodromatic: technically invariant under $\theta \rightarrow \theta + 2\pi/M$.

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$\mathrm{d}J_e = j_{\mathrm{matter}}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic			

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$dJ_e = j_{matter}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$		

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$dJ_e = j_{matter}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_M^{(1)}$	

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$dJ_e = j_{matter}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_{M}^{(1)}$	$m_{\theta} = \frac{M}{2\pi} g_4 e_{K,4}$

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$dJ_e = j_{matter}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_{M}^{(1)}$	$m_{\theta} = \frac{M}{2\pi} g_4 e_{K,4}$
Gauging One- Form Electric			

- Suppose I add two-form field $B_{\mu\nu}$

- Suppose I add two-form field $B_{\mu\nu}$
 - $S^{5D} \supset -\frac{1}{2e_B^2} \int dB \wedge \star dB k \int B \wedge \star F$

- Suppose I add two-form field $B_{\mu\nu}$ $S^{5D} \supset -\frac{1}{2e_p^2} \left[dB \wedge \star dB - k \left[B \wedge \star F \right] \right]$
- embedded in Stueckelberg-like action

• Not gauge invariant under $B \to B + d\Lambda, C \to C + \Lambda$. Must be

39

- Suppose I add two-form field $B_{\mu\nu}$ $S^{5D} \supset -\frac{1}{2e_p^2} \left[dB \wedge \star dB - k \left[B \wedge \star F \right] \right]$
- Not gauge invariant under $B \to B + d\Lambda, C \to C + \Lambda$. Must be embedded in Stueckelberg-like action

$$S^{5D} \supset -\frac{1}{2e_B^2} \int \mathrm{d}B \wedge \star \mathrm{d}B$$

 $-\frac{1}{2g_5^2}\int (\mathrm{d}C - kB) \wedge \star (\mathrm{d}C - kB)$

one-form gauge field $A_{\mu} \equiv B_{\mu 5}$

• Upon dimensional reduction, the relevant surviving part of B is a

• Upon dimensional reduction, the relevant surviving part of B is a one-form gauge field $A_{\mu} \equiv B_{\mu 5}$

 Resultant 4D action is standard Stueckelberg $S^{4D} \supset -\frac{1}{2e_{B,4}^2} \int dA \wedge \star dA -$

$$-\frac{1}{2g_4^2}\int (\mathrm{d}\theta - kA) \wedge \star (\mathrm{d}\theta - kA)$$

• Upon dimensional reduction, the relevant surviving part of B is a one-form gauge field $A_{\mu} \equiv B_{\mu 5}$

- Resultant 4D action is standard Stueckelberg $S^{4D} \supset -\frac{1}{2e_{B,4}^2} \int dA \wedge \star dA -$
 - $\rightarrow m_A \sim kfe_{B,4}$

$$-\frac{1}{2g_4^2}\int (\mathrm{d}\theta - kA) \wedge \star (\mathrm{d}\theta - kA)$$

• Upon dimensional reduction, the relevant surviving part of B is a one-form gauge field $A_{\mu} \equiv B_{\mu 5}$

Resultant 4D action is standard Stueckelberg

$$S^{\rm 4D} \supset -\frac{1}{2e_{B,4}^2} \int \mathrm{d}A \wedge \star \mathrm{d}A - \frac{1}{2g_4^2} \int (\mathrm{d}\theta - kA) \wedge \star (\mathrm{d}\theta - kA)$$

Axion gets eaten

 $\rightarrow m_A \sim kfe_{R4}$

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$\mathrm{d}J_e = j_{\mathrm{matter}}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_M^{(1)}$	$m_{\theta} = \frac{M}{2\pi} g_4 e_{K,4}$
Gauging One- Form Electric			

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$\mathrm{d}J_e = j_{\mathrm{matter}}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_M^{(1)}$	$m_{\theta} = \frac{M}{2\pi} g_4 e_{K,4}$
Gauging One- Form Electric	$kJ'_e = \frac{1}{e_B^2} \mathbf{d} \star \mathbf{d}B$		

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$\mathrm{d}J_e = j_{\mathrm{matter}}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_M^{(1)}$	$m_{\theta} = \frac{M}{2\pi} g_4 e_{K,4}$
Gauging One- Form Electric	$kJ'_e = \frac{1}{e_B^2} \mathbf{d} \star \mathbf{d}B$	$U(1)^{(1)}$	

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$\mathrm{d}J_e = j_{\mathrm{matter}}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_M^{(1)}$	$m_{\theta} = \frac{M}{2\pi} g_4 e_{K,4}$
Gauging One- Form Electric	$kJ'_e = \frac{1}{e_B^2} \mathbf{d} \star \mathbf{d}B$	$U(1)^{(1)}$	$m_{\tilde{A}} = k e_{B,4} f$

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$dJ_e = j_{matter}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_{M}^{(1)}$	$m_{\theta} = \frac{M}{2\pi} g_4 e_{K,4}$
Gauging One- Form Electric	$kJ'_e = \frac{1}{e_B^2} \mathbf{d} \star \mathbf{d}B$	$U(1)^{(1)}$	$m_{\tilde{A}} = k e_{B,4} f$
ABJ Term			

• Suppose I add an SU(3) gluon field w/ field strength G

• Suppose I add an SU(3) gluon field w/ field strength G

$S^{5D} \supset \left[-\frac{1}{2g_{C}^{2}} \operatorname{Tr} \left[G \wedge \star G \right] - \frac{1}{8\pi^{2}} C \wedge \operatorname{Tr} \left[G \wedge G \right] \right]$

• Suppose I add an SU(3) gluon field w/ field strength G

$$S^{5\mathrm{D}} \supset \int -\frac{1}{2g_G^2} \mathrm{Tr} \left[G \wedge \star G \right] - \frac{1}{8\pi^2} C \wedge \mathrm{Tr} \left[G \wedge G \right]$$

• EoM is $dJ_e \propto Tr |G \wedge G|$. Like ABJ anomaly.

• Suppose I add an SU(3) gluon field w/ field strength G

$$S^{5\mathrm{D}} \supset \int -\frac{1}{2g_G^2} \mathrm{Tr} \left[G \wedge \star G \right] - \frac{1}{8\pi^2} C \wedge \mathrm{Tr} \left[G \wedge G \right]$$

• EoM is $dJ_e \propto Tr |G \wedge G|$. Like ABJ anomaly.

This is just the usual gluon potential after dimensional reduction.

42

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$dJ_e = j_{matter}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_{M}^{(1)}$	$m_{\theta} = \frac{M}{2\pi} g_4 e_{K,4}$
Gauging One- Form Electric	$kJ'_e = \frac{1}{e_B^2} \mathbf{d} \star \mathbf{d}B$	$U(1)^{(1)}$	$m_{\tilde{A}} = k e_{B,4} f$
ABJ Term			

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$\mathrm{d}J_e = j_{\mathrm{matter}}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_M^{(1)}$	$m_{\theta} = \frac{M}{2\pi} g_4 e_{K,4}$
Gauging One- Form Electric	$kJ'_e = \frac{1}{e_B^2} \mathbf{d} \star \mathbf{d}B$	$U(1)^{(1)}$	$m_{\tilde{A}} = k e_{B,4} f$
ABJ Term	$\mathrm{d}J_e = \frac{N}{8\pi^2} \mathrm{Tr}\left[G \wedge G\right]$		

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$\mathrm{d}J_e = j_{\mathrm{matter}}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_{M}^{(1)}$	$m_{\theta} = \frac{M}{2\pi} g_4 e_{K,4}$
Gauging One- Form Electric	$kJ'_e = \frac{1}{e_B^2} \mathbf{d} \star \mathbf{d}B$	$U(1)^{(1)}$	$m_{\tilde{A}} = k e_{B,4} f$
ABJ Term	$\mathrm{d}J_e = \frac{N}{8\pi^2} \mathrm{Tr}\left[G \wedge G\right]$	$\mathbb{Z}_N^{(1)}$	

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$\mathrm{d}J_e = j_{\mathrm{matter}}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_{M}^{(1)}$	$m_{\theta} = \frac{M}{2\pi} g_4 e_{K,4}$
Gauging One- Form Electric	$kJ'_e = \frac{1}{e_B^2} \mathbf{d} \star \mathbf{d}B$	$U(1)^{(1)}$	$m_{\tilde{A}} = k e_{B,4} f$
ABJ Term	$\mathrm{d}J_e = \frac{N}{8\pi^2} \mathrm{Tr}\left[G \wedge G\right]$	$\mathbb{Z}_N^{(1)}$	$V \simeq -\Lambda_{\rm QCD}^4 \cos(N\theta)$

The Takeaway

The Takeaway

Potential generation for the extra-dimensional axion can be understood systematically via all the ways of breaking/gauging the electric oneform symmetry

- Suppose we have a separate gauge field A with field strength ${\cal F}^A$ and coupling

• Suppose we have a separate gauge field A with field strength F^A and coupling $S^{5D} \supset \frac{1}{8\pi^2} \left[C \wedge F^A \wedge F^A \longrightarrow dJ_e \propto F^A \wedge F^A \right]$

• Suppose we have a separate gauge field A with field strength F^A and coupling

$$S^{5D} \supset \frac{1}{8\pi^2} \int C \wedge F^A \wedge \frac{1}{8\pi^2}$$

• No U(1) instantons, so where is the potential?

$F^A \longrightarrow \mathrm{d}J_e \propto F^A \wedge F^A$

• Suppose we have a separate gauge field A with field strength F^A and coupling

$$S^{5D} \supset \frac{1}{8\pi^2} \int C \wedge F^A \wedge \frac{1}{8\pi^2}$$

- No U(1) instantons, so where is the potential?
- It has been shown that monopole loops in 4D yield axion potential contributions. *"Axion Mass From Magnetic Monopole Loops" Fan, Fraser, Reece, Stout.*

$F^A \longrightarrow \mathrm{d}J_e \propto F^A \wedge F^A$

In 4D, monopole loops generate a potential

In 4D, monopole loops generate a potential

In 4D, monopole loops generate a potential

• By EM duality, monopoles in 5D are strings.

In 4D, monopole loops generate a potential

• By EM duality, monopoles in 5D are strings.

Closed worldsheets generate potential

 In 5D, the entire worldsheet must wrap itself to generate a potential

 In 5D, the entire worldsheet must wrap itself to generate a potential

$$S_{\text{worldline}} = -\frac{1}{2} \frac{T}{m_W^2} \int d_A \sigma \wedge \star d_A \sigma$$

 $_{A}\sigma + \frac{1}{2\pi} \int C \wedge d_{A}\sigma$

 In 5D, the entire worldsheet must wrap itself to generate a potential

$$S_{\text{worldline}} = -\frac{1}{2} \frac{T}{m_W^2} \int d_A \sigma \wedge \star d_A \sigma$$

 In 5D, the entire worldsheet must wrap itself to generate a potential

$$S_{\text{worldline}} = -\frac{1}{2} \frac{T}{m_W^2} \int d_A \sigma \wedge \star d_A \sigma + \frac{1}{2\pi} \int C \wedge d_A \sigma$$

Computing wrapped extremized action yields

 In 5D, the entire worldsheet must wrap itself to generate a potential

$$S_{\text{worldline}} = -\frac{1}{2} \frac{T}{m_W^2} \int d_A \sigma \wedge \star d_A \sigma$$

Computing wrapped extremized action yields

$$V(\theta) = -\sum_{\ell=1}^{\infty} \frac{R^2 T_M^2 m_W^2}{8\pi^2 \ell^3} e^{-4\pi^2 \ell R T_M / m_W} \cos^2\theta$$

Link Between Monopoles and Instantons

Link Between Monopoles and Instantons

Work in prep. with Ken Van Tilburg & Isabel Garcia Garcia

Link Between Monopoles and Instantons

Work in prep. with Ken Van Tilburg & Isabel Garcia Garcia

	Current Equation	Remnant Symmetry	Potential
Electrically Charged Matter	$\mathrm{d}J_e = j_{\mathrm{matter}}$	$\mathbb{Z}_q^{(1)}$	$V \simeq \frac{(m_{5D}R)^2}{(2\pi R)^4} e^{-m_{5d}R} \cos(q$
Gauging Two- Form Magnetic	$\mathrm{d}J_e = \frac{M}{2\pi}\mathrm{d}K$	$\mathbb{Z}_M^{(1)}$	$m_{\theta} = \frac{M}{2\pi} g_4 e_{K,4}$
Gauging One- Form Electric	$kJ'_e = \frac{1}{e_B^2} \mathbf{d} \star \mathbf{d}B$	$U(1)^{(1)}$	$m_{\tilde{A}} = k e_{B,4} f$
ABJ Term	$\mathrm{d}J_e = \frac{N}{8\pi^2} \mathrm{Tr}\left[G \wedge G\right]$	$\mathbb{Z}_N^{(1)}$	$V \simeq -\Lambda_{\rm monopole}^4 \cos(Nt)$

Conclusions

 The masslessness of the extra-dimensional axion in the IR is protected by a one-form U(1) electric symmetry in the UV.

- The masslessness of the extra-dimensional axion in the IR is protected by a one-form U(1) electric symmetry in the UV.
- Higher-form symmetries are "harder to break" and protect the quality of the axion potential (unlike PQ axions).

- The masslessness of the extra-dimensional axion in the IR is protected by a one-form U(1) electric symmetry in the UV.
- Higher-form symmetries are "harder to break" and protect the quality of the axion potential (unlike PQ axions).

• All ways of generating a potential \leftrightarrow all ways of breaking $U(1)^{(1)}_{\rho}$.

Main Takeaways

- The masslessness of the extra-dimensional axion in the IR is protected by a one-form U(1) electric symmetry in the UV.
- Higher-form symmetries are "harder to break" and protect the quality of the axion potential (unlike PQ axions).
- tuned for future work!

• All ways of generating a potential \leftrightarrow all ways of breaking $U(1)^{(1)}_{o}$.

Interesting interplay between electric and magnetic sector: stay

