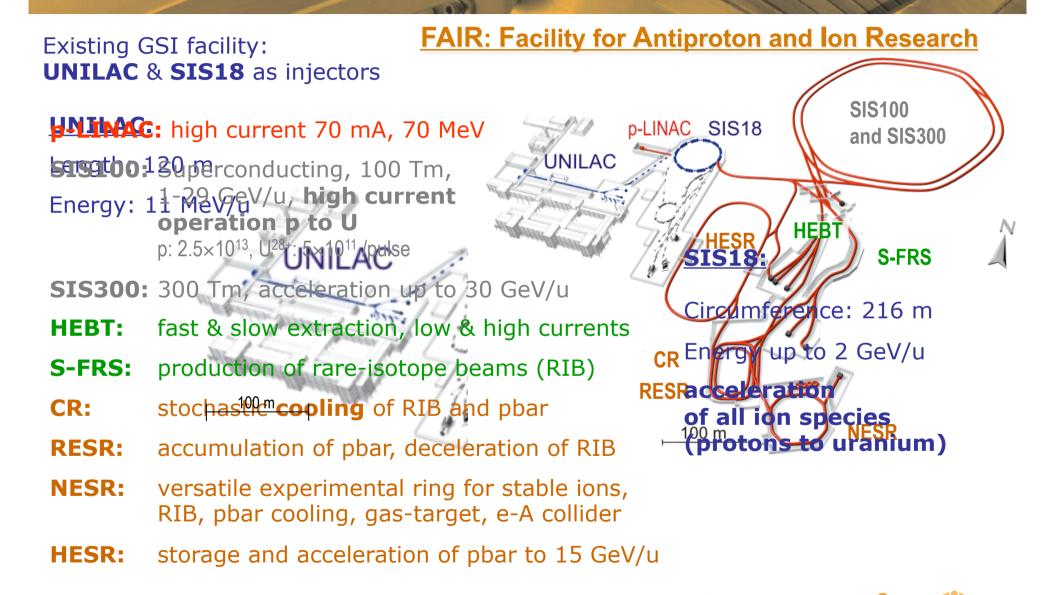
DITANET Workshop on High Intensity Proton Beam Diagnostics, 26-27 Sep 2011

The FAIR p-Linac: Technical Overview and Diagnostic Instruments


<u>M. Schwickert</u>, P. Forck, P. Kowina and F. Becker for the GSI Beam Diagnostics Department

- GSI and the FAIR Project
- p-Bar production chain
- p-Linac Technical Layout
- p-Linac Diagnostics
 - Beam Position and Energy using BPMs
 - Beam Induced Fluorescence for Transverse Profiles

HELMHOLTZ

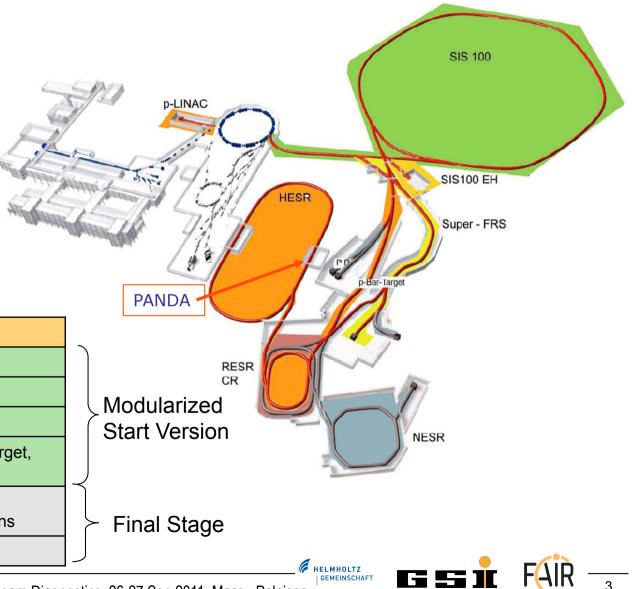
GSI and the FAIR Project

HELMHOLTZ

EMEINSCHAFT

Modularized FAIR Version

International Steering Committee:


For soon start of the FAIR construction

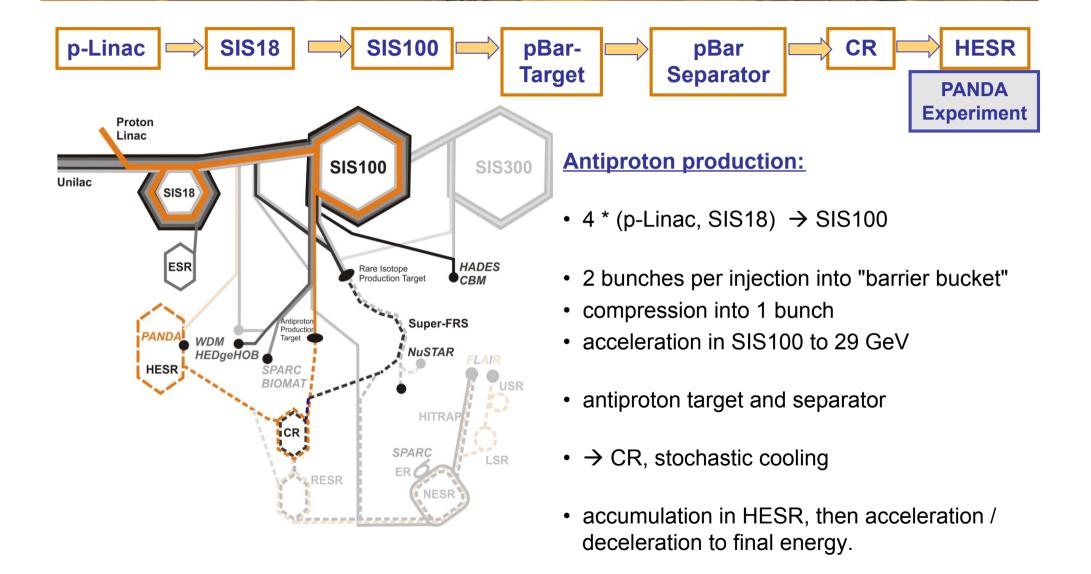
FAIR Joint Core Team and Scientific and Technical Issues Working Group

were mandated to prepare a proposal for

a start version accounting for recent cost estimates and firm funding commitments

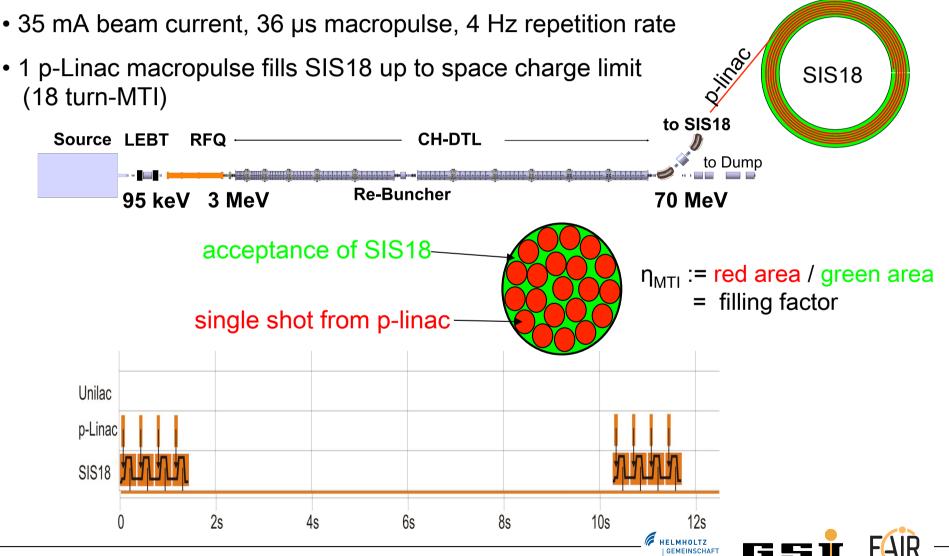
Module	Color	Machine		
0	green	SIS100		
1	ochre	Experimental hall		M
2	yellow	Super-FRS	<u>ح</u>	S
3	orange	p-Linac, p-Bar-Target, CR, HESR		
4	blue-gray	NESR, experiment stations		F
5	red-brown	RESR		

• GSI and the FAIR Project


p-Bar production chain

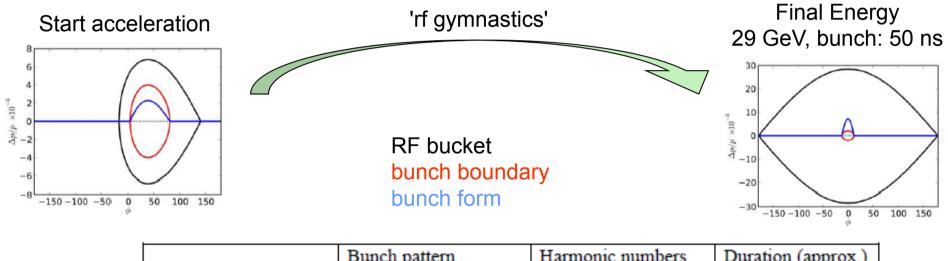
- p-Linac Technical Layout
- p-Linac Diagnostics
 - Beam Position and Energy using BPMs
 - Beam Induced Fluorescence for Transverse Profiles

Beam Production for PANDA



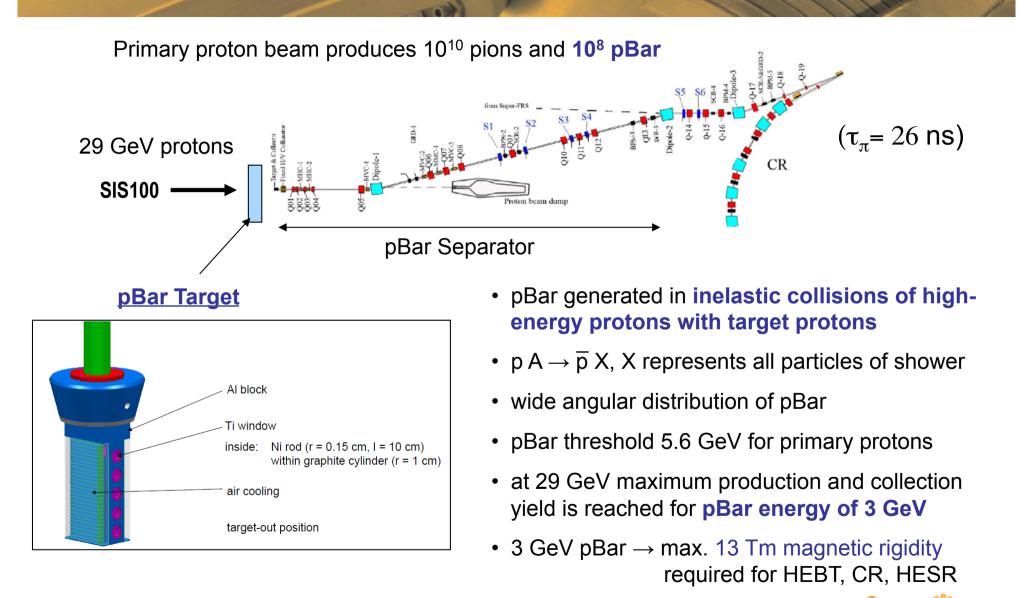
HELMHOLTZ

GEMEINSCHAFT

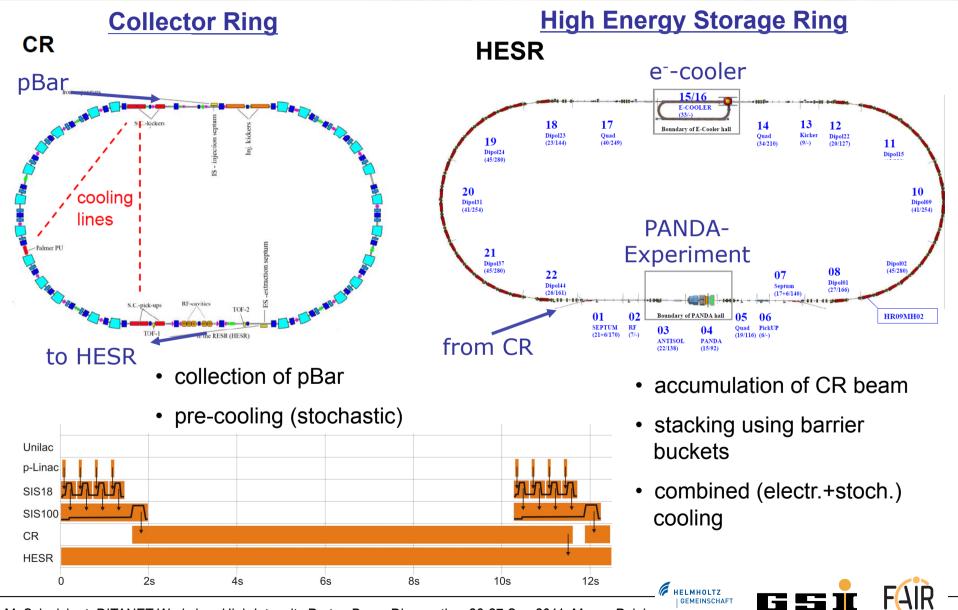

Proton Beam: p-Linac to SIS18

• p-Linac: dedicated high current injector 70 MeV proton beam for pBar production

pBar Operation of SIS100


- acceleration of proton beam 4 GeV to 29 GeV
- during subsequent acceleration bunch length shrinks below 50 ns

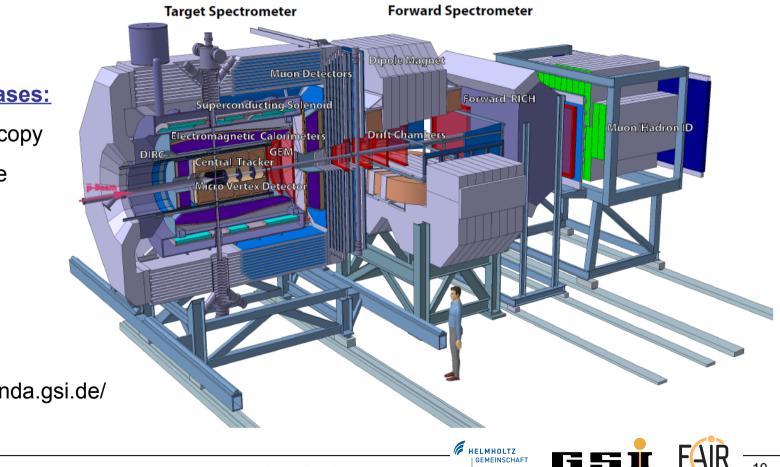
	Bunch pattern	Harmonic numbers	Duration (approx.)
Injection from SIS-18	4 bunches / 6 empty	10	1.1 s
Merging	2 bunches / 3 empty	10→5	0.1 s
Batch compression	2 bunches / 8 empty	5→6→7→8→9→10	0.3 s
Merging	1 bunch / 4 empty	10→5	0.1 s
Acceleration	1 bunch / 4 empty	5	0.4 s


pBar Target and Separator

HELMHOLTZ

8


pBar Operation in CR / HESR



PANDA – Anti-Proton ANnihilation at DArmstadt

The PANDA Collaboration: 450 scientist from 17 countries

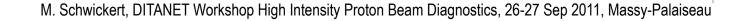
<u>Goal:</u> basic research on various topics covering weak and strong forces, exotic states of matter and the structure of hadrons.

PANDA physics cases:

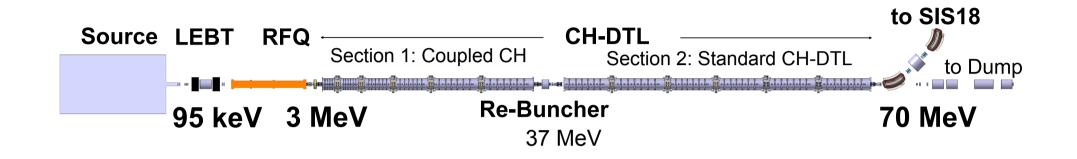
- Hadron Spectroscopy
- Nucleon Structure
- Hadrons in Mater
- Hypernuclei

 \rightarrow http://www-panda.gsi.de/

• GSI and the FAIR Project


p-Bar production chain

p-Linac Technical Layout


- p-Linac Diagnostics
 - Beam Position and Energy using BPMs
 - Beam Induced Fluorescence for Transverse Profiles

Summary

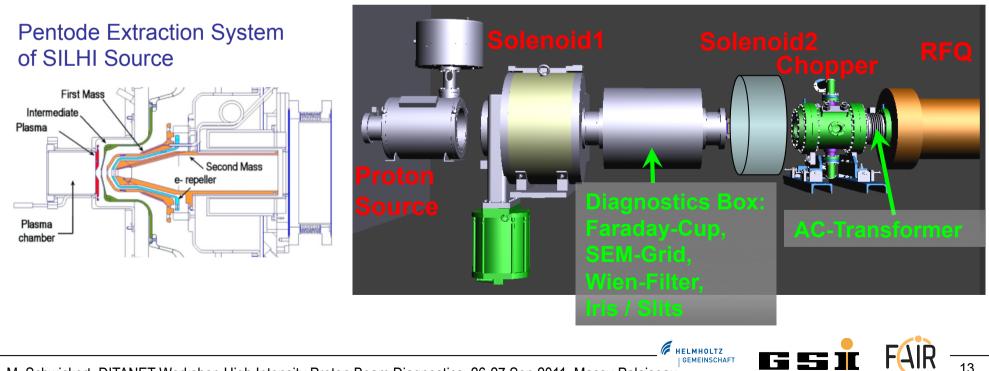
p-Linac: Overview

70 MeV
35 mA
70 mA
36 µs
4 Hz
325.224 MHz
2.1 / <i>4.2</i> µm
≤ ± 10 ⁻³
≈ 35 m

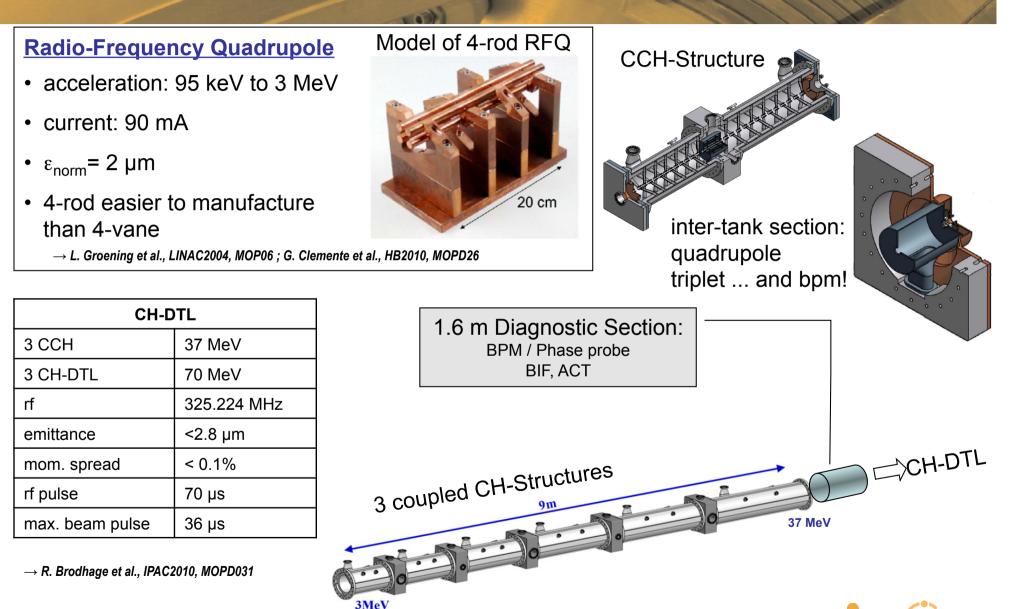
- first Linac based on room temperature 'crossbar H-type' structure (CH-DTL) with KONUS beam dynamics
- rf is multiple of UNILAC HSI resonance frequency (36.136 MHz), fits to 3 MW klystrons of J-PARC (324 MHz)
- intertank-section for diagnostics (beam intensity, position, energy, profile)
- goal: production of 2×10¹⁶ protons/h

p-Linac: ECR Ion Source (SILHI) / LEBT

	Required	SILHI
H ⁺ current	100 mA	105 mA**
Full beam	<115 mA	110 mA**
Energy	95 keV	95 keV
Duty cycle	4 Hz	4 Hz
Pulse length	>36 µs	>300 µs**
Emittance*	$0.3 \pi \text{ mm mrad}$	≤0.5 π mm mrad**
Noise	<±5 %	±7 %**
Life time	months	months
Availability	>90 %	99 %


*(norm., rms), **(typical values, not optimized for pulsed operation)

Source d'ions legères d'haute intensité


ECR-type proton source: H^+ , H_2^+ , H_3^+

SILHI source and major part of LEBT delivered as French in-kind contribution (CEA Saclay)

Preliminary LEBT Design

pLinac: RFQ and CH-Structure

HELMHOLTZ

GEMEINSCHAFT

M. Schwickert, DITANET Workshop High Intensity Proton Beam Diagnostics, 26-27 Sep 2011, Massy-Palaiseau

14

• GSI and the FAIR Project

- p-Bar production chain
- p-Linac Technical Layout

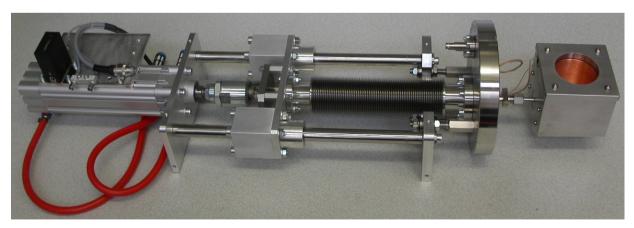
p-Linac Diagnostics

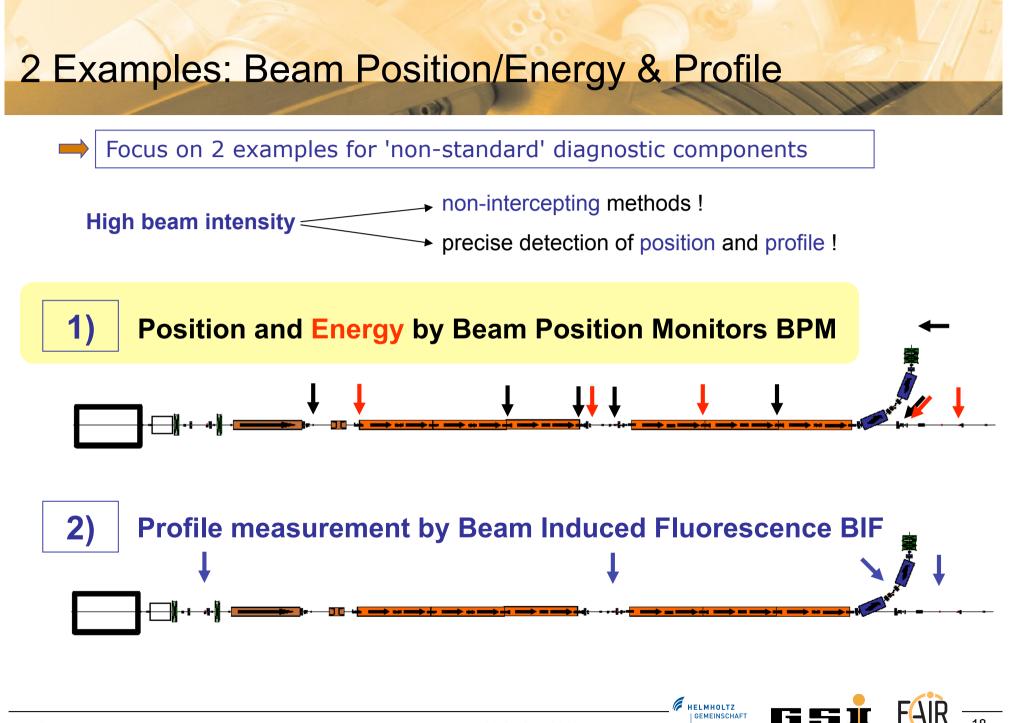
- Beam Position and Energy using BPMs
- Beam Induced Fluorescence for Transverse Profiles

Beam Diagnostics for FAIR p-LINAC

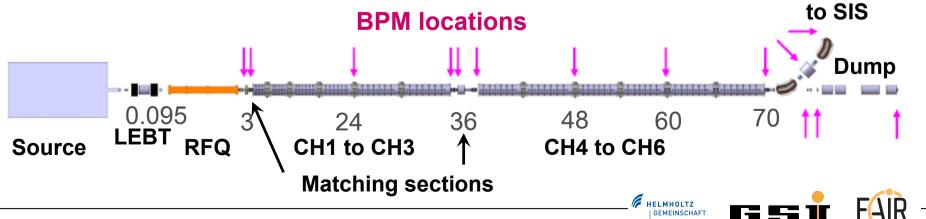
Beam Parameter	Device	#	Non- destructive	Remark
Current	Transformer	9	Yes	Dynamic transmission interlock
	Faraday Cups	4	No	Only used as beam dump
Profile	SEM-Grid	4	No	Standard, requires trans. control
	BIF (fluorescence)	4	Yes	Under development
Transverse emittance	Slit-Grid	3	No	Standard
Position	BPM	15	Yes	Online display
Mean energy	BPM	(15)	Yes	Time-of-flight or phase
Bunch shape	Non intersecting BSM		Yes	Novel, under development
Charge states	Wien Filter	1	Yes	From CEA Saclay

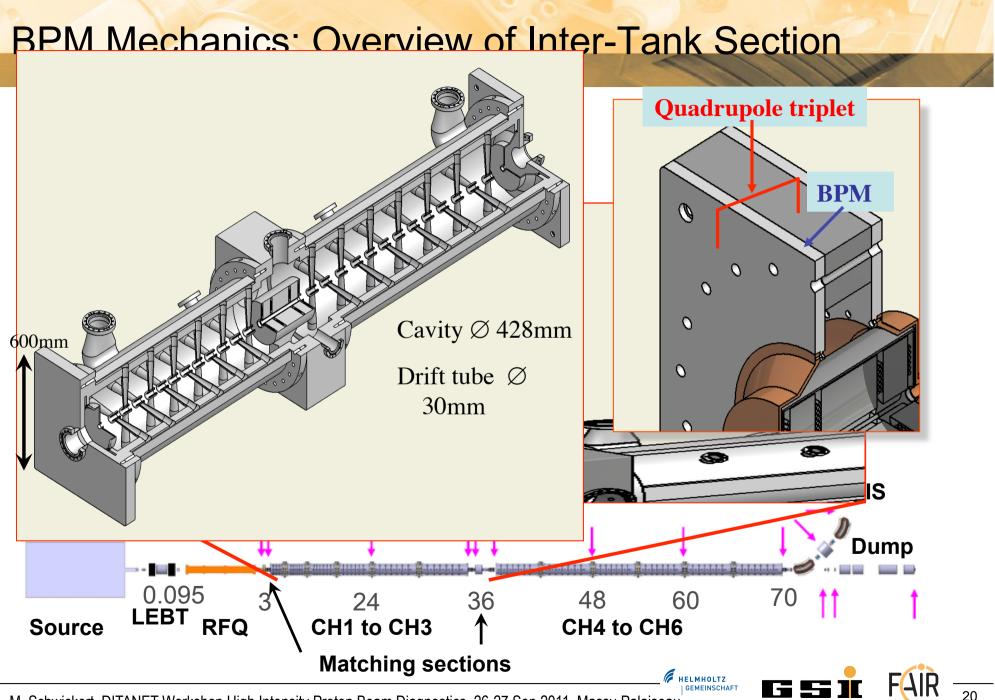
'Standard' Diagnostic Equipment


AC-Current Transformer

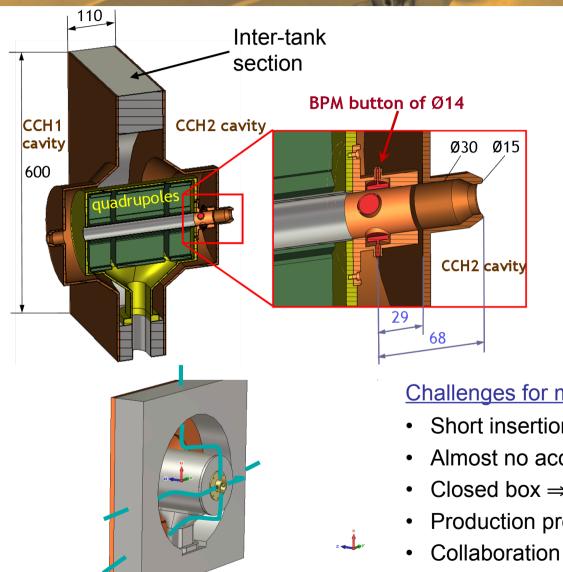

SEM-Grid

Faraday-Cup




Requirements for p-Linac BPMs

- Dynamic range 60 dB, i.e. 0.3 mA or 1 % I_{nom} measurable (UNILAC >100 dB)
- Relative beam current: by sum signal
- Position evaluation: resolution better 0.1 mm within 30 μ s (t_{pulse} =36 μ s) \implies
- Phase evaluation / Energy via TOF: resolution Δφ=1⁰ equals Δt=10 ps
- Observation with ≈1µs time steps desirable
- 14 locations, button-type BPMs preferred due to compactness
- Only two types (Ø30mm or Ø50mm) to prevent systematic errors for phase measurement
- Some BPMs must be installed between the rf cavities
 - \Rightarrow possible rf-leakage \Rightarrow position evaluation on 2nd harmonics at 650 MHz



BPM Mechanics: 3 BPMs inside Inter-Tank Section

Example: button-type BPM (Company Megitt)

Challenges for mechanical realization:

- Short insertion length \approx 30 mm
- Almost no accessibility \Rightarrow difficulty of cable rooting
- Closed box \Rightarrow Thermal investigations required
- Production process has to be elaborated
- Collaboration with University Frankfurt

FEM Simulations for Button-Type BPMs

Usage of BPMs for position reading

Here: design consideration for FAIR p-LINAC Using button types (commercially available)

Design using CST calculations

- > different β along lattice
- Position for nth rf harmonics

Parameters:

- BPM aperture: Ø 30 mm
- ▶ f_{rf} = 325 MHz
- > bunch length $\sigma_t = 150 \text{ ps}$

Simulations:

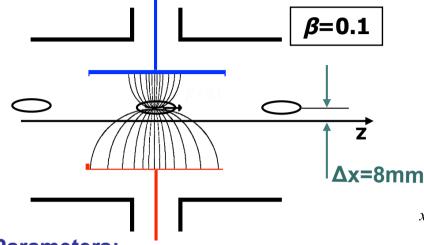
- > CST Particle Studio for 0.1 < β < 0.3
- > Gaussian charge distribution of $\sigma_t = 150 \text{ ps}$
- Wake Field Solver used
- > ~1.8x10⁶ mesh cells

Simulation time ~20 h / task

Collaboration with CEA/Saclay and TU-Darmstadt

P. Kowina (GSI) et al., DIPAC'09, C. Simon (CEA) et al , DIPAC'11

M. Schwickert, DITANET Workshop High Intensity Proton Beam Diagnostics, 26-27 Sep 2011, Massy-Palaiseau

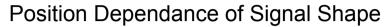

 \rightarrow Design and test of BPM buttons as part of French in-kind by CEA Saclay

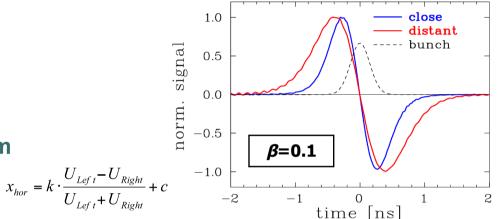
HELMHOLTZ

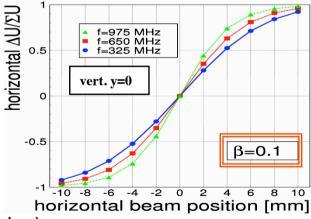
Pipe Ø30mm

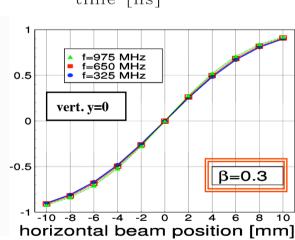
Button Ø14mm

FEM Simulations for low-β Beam

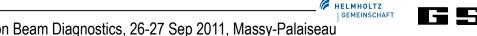



Parameters:


- BPM aperture: Ø 30 mm
- *f_{rf}* = 325 MHz \geq
- bunch length σ_t = 150 ps


Results:

- signal shape and spectrum \geq position dependent
- \geq position sensitivity depends on frequency (chosen rf harmonics)
- Non-linear reading, but linear \geq for β >30% as expected from simple model

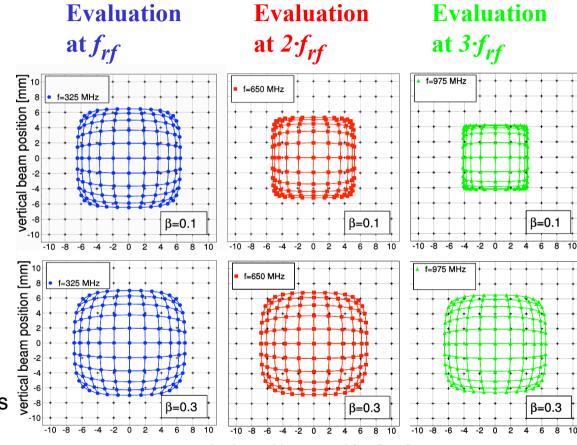


Collaboration with CEA/Saclay and TU-Darmstadt, P. Kowina (GSI) et al., DIPAC'09, C. Simon (CEA) et al , DIPAC'11

Position Maps for low-β Beam: Frequency Dependance

Parameters:

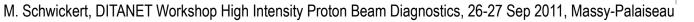
- BPM aperture: Ø 30 mm
- ▶ f_{rf} = 325 MHz
- > bunch length σ_t = 150 ps


Results:

- Readout is non-linear
- > xy-coupling
- sensitivity map depends on β and frequency (chosen rf harmonics)
 - \succ strong dependence for β ≤ 0.1
 - ➤ weak dependence for β ≥ 0.3

Consequences:

- sensitivity maps to be prepared
 for each location (β) and harmonics
- BPMs usable for limited beam displacement:


e.g. for β = 0.1 and 3 rd rf harmonics ±5 mm only i.e. ~30 % of aperture!

horizontal beam position [mm]

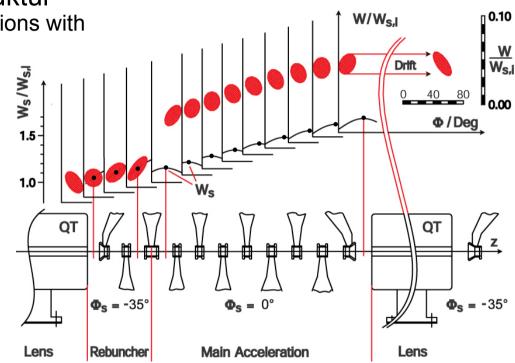
Collaboration with CEA/Saclay and TU-Darmstadt, P. Kowina (GSI) et al., DIPAC'09, C. Simon (CEA) et al , DIPAC'11

BPM – Requirements for Energy Measurement

KONUS: Kombinierte Null Grad Struktur Basic idea: devide each lattice period into regions with separated tasks (in contrast to e.g. Alvarez)

KONUS period consists of:

I) 0° acceleration section


main acceleration along a 0° synchronous particle structure with asynchronous injection and greater bunch energy than sync. particle

II) quadrupole triplet or solenoid lens

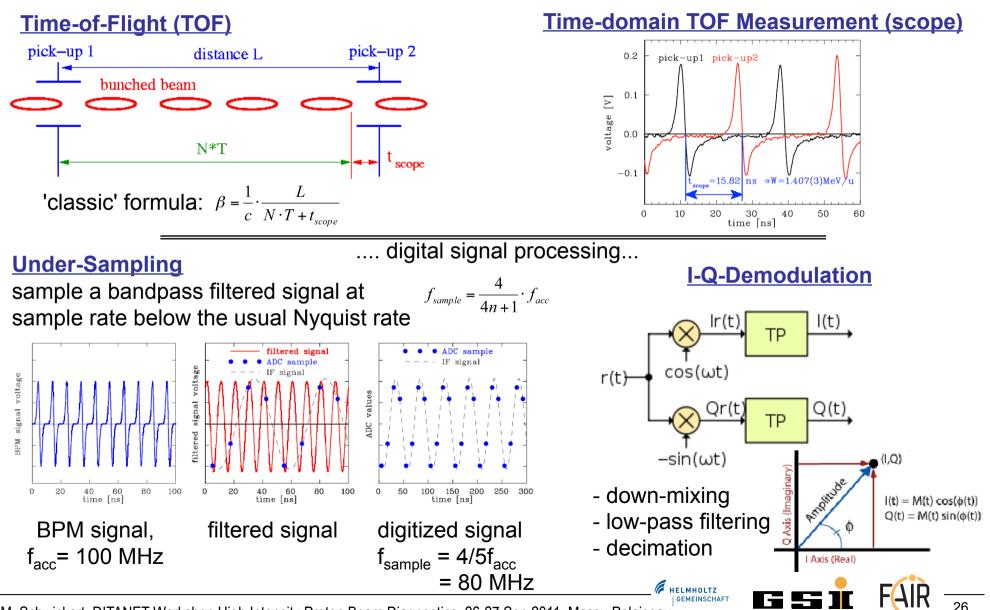
transverse focusing

III) rebuncher section

Longitudinal focusing by few bunching gaps operated at $\varphi_{s}\text{=}$ - 35°

Advantages:

- high efficiency (shunt impedance) of H-mode resonators
- low rf wall losses, low capacity load due to slim drift tubes

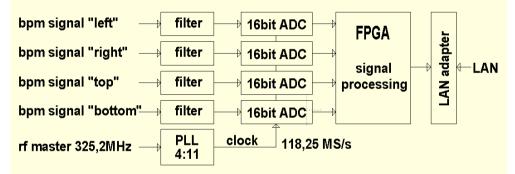

Important Requirement:

precise monitoring / control of bunch phase $\Delta \phi = 1^{\circ}(8.5 \text{ ps at} 325 \text{ MHz }!!)$ and energy

 \rightarrow higher eff. field gradient (< 7 MV/m) than e.g. Alvarez

Successful KONUS-Linacs: Pb-Injector (CERN), HSI/HLI (GSI), ISAC (TRIUMF)

BPM – Techniques for Energy Measurement

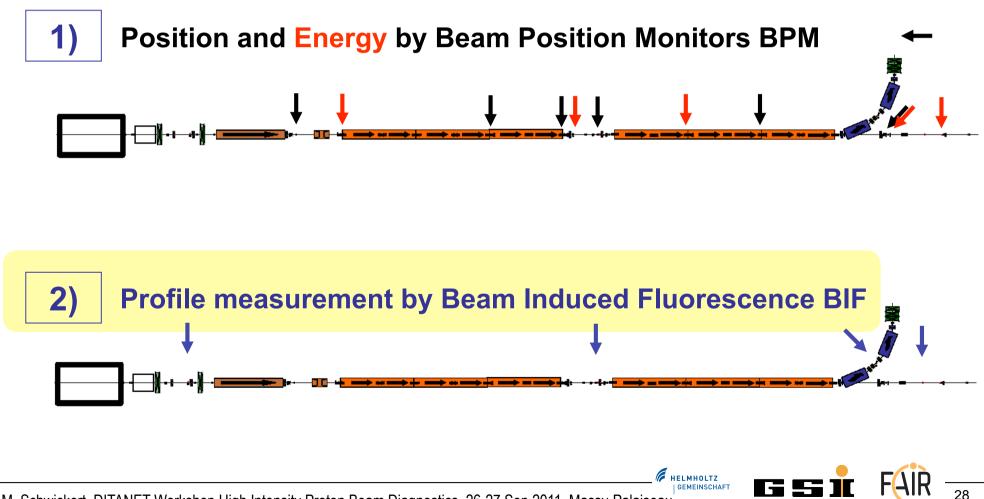

Digital Signal Processing for BPMs

Possible novel 'all in one' readout by Digital Receiver technology:

- > Analog filter at $2 \cdot f_{acc}$ =650 MHz
- ➤ Under-sampling with 16-bit ADC at 4/11·*f_{acc}*=118 MS/s
- Digital processing on FPGA for relative current (sum), position (difference) and ToF (phase)
- Possible production by Company I-Tech within as Slovenian in-kind contribution

position and phase processor, block diagram

Status and concerns:


- Successful test-bench demonstration by I-Tech and CIEMAT
- Expectation: well suited for relative current and position measurements

Open issues for TOF-Measurements (phase detection)

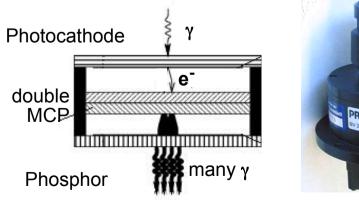
- Effects on varying bunch shapes, e.g. deformed bunches?
- Accuracy for measurement with two BPMs?
- Ambiguity for variable number of bunches between BPMs?

Installation Locations BPM and BIF

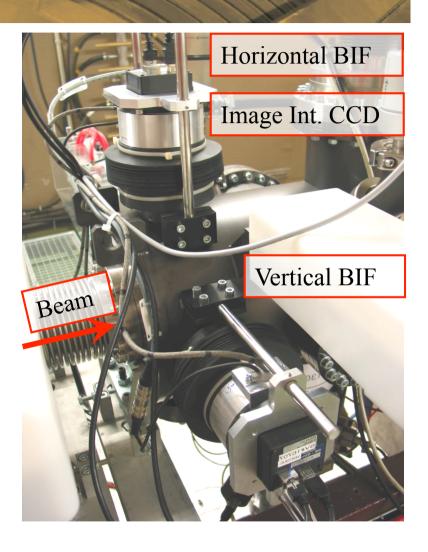
Focus on 2 examples for 'non-standard' diagnostic components

Beam Induced Fluorescence Monitor

Detecting *photons* from working gas molecules, e.g. Nitrogen N₂-fluorescent gas equally distributed Blackened walls emitted into solid angle Ω to camera 150mm flange single photon detection scheme Valve **Features:** Transv. profile: projection in z-direction Viewport CCD High resolution (here 0.2 mm/pixel) camera can be matched to application viewport size Single pulse observation possible down to ≈10 µs time resolution beam Commercial Image Intensifier ert Less installations inside vacuum as for IPM Beam: Ar¹⁰⁺ at 4.7 MeV/u, I=2.5 mA, 5 10 οÌ P. Forck, Proc. IPAC'10 aver. pixel int. 10^{11} ppp, p= 10^{-5} mbar F. Becker et al., Proc. DIPAC'07, DIPAC'11 HELMHOLTZ

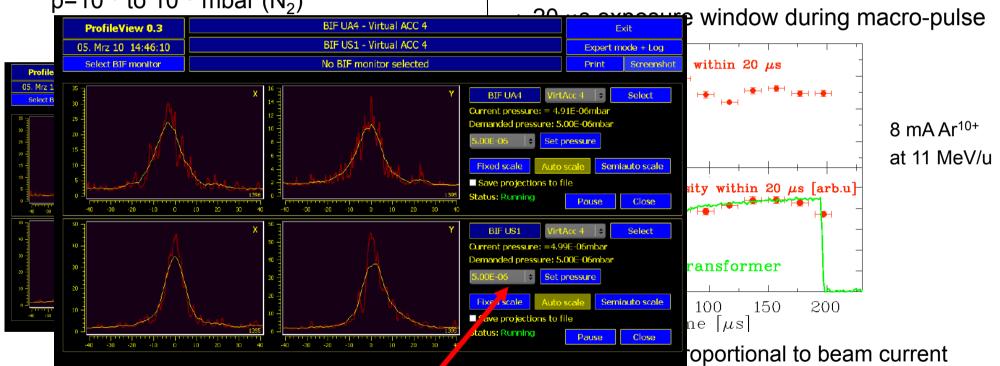

M. Schwickert, DITANET Workshop High Intensity Proton Beam Diagnostics, 26-27 Sep 2011, Massy-Palaiseau

GEMEINSCHAE


BIF: Technical Realization at UNILAC

Example: BIF-Station at GSI-UNILAC

- Insertion length: 25 cm
- 2 image intensified CCD cams, single photon counting by V-stack MCP (10⁶ amplification)
- · Commercial image intensifier, low background
- Reproduction scale 0.2 mm/pixel
- Remote controlled gas inlet + gauge
- Pneumatic feed-through for LED calibration
- In operation at 4 locations at UNILAC



30

Examples from Ion LINAC at GSI Single pulse observation One single macro pulse of 200 μ s Typical vacuum pressure: p=10⁻⁶ to 10⁻⁵ mbar (N₂)

System ready for operational usage:

Presently at 4 locations along UNILAC

3 more in preparation.

Further application: Background suppression by matching the exposure to beam delivery

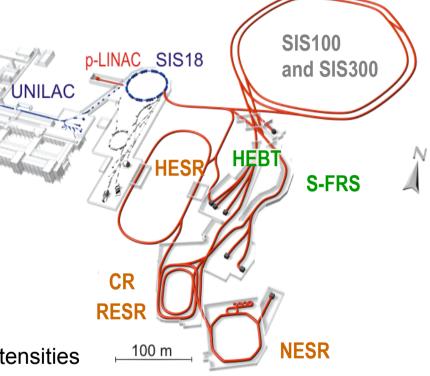
HELMHOLTZ

GEMEINSCHAFT

Summary

FAIR

multi-national large-scale accelerator project p-Bar production chain for PANDA experiment


p-Linac

SILHI source for high-intensity proton beams coupled ch-structures, KONUS beam dynamics

Beam Diagnostics

mainly non-intercepting instruments due to high intensities

- **BPMs**: - strong mechanical boundary conditions for in-tank installation
 - low- β effects (bunch shape, position sensitivity)
 - digital processing for phase/energy detection
- **BIF**:
- high spatial resolution of complete macropulse
 - no mechanical parts inside vacuum required
 - 4 monitors as standard tools for UNILAC operation

HELMHOLTZ

Acknowledgements

CEA - Saclay

BPM-team: C. Simon, F. Senée, O. Napoly and colleagues

Ion Source Team: R. Gobin, N. Chauvin and colleagues Thank you for your attention!

IAP University Frankfurt

H. Podlech, R. Brodhage, U. Ratzinger

GSI/FAIR

p-Linac Team: L. Groening, R. Hollinger, G. Clemente

Beam Diagnostics: P. Forck, P. Kowina, F. Becker

4th DITANET Topical Workshop on High DITANE Intensity Proton Beam Diagnositics

Spare Transparencies...

BPM Parameters

	Range	Precision	Resolution	
Transverse positio	n 0 to 5 mm	0.3 mm	0.1 mm	
Longitudinal phase	e 0-360°	1°	1 °	
Aperture	30 mm intertank section, 50) mm transfer lines		
Length	50 mm (at connector location	on, shorter at pipe radiu	IS)	
Vacuum pressure	5*10 ⁻⁸ mbar			
Beam energy	From 3 MeV to 70 MeV			
Bunch frequency	325.225 MHz			
Repetition rate	4 Hz			
Beam pulse length	36 μs nominal, 100 μs maximum			
Bunch length	150 ps average (actual length depends on location)			
Linearity	+/- 5 mm			
Dynamic range	0.1 mA - 100 mA			
Position resolution 1σ	0.1 mm averaged over the full macro pulse of 30 μs duration about 0.5 mm for 3 μs duration			
Absolute precision	0.3 mm, requires a concept of beam-based alignment			
Phase resolution	1° (8.5 ps) averaged over the full macro pulse of 30 μs duration			
Phase accuracy	1º averaged over the full ma	acro pulse of 30 µs dura	ation	
Drift over 1 hour	Less than 0.1 mm, less than 1 ^{°,} long term drifts are compensated by calibrations with test signals			

Parameters Faraday-Cup

2.7.6.1.2 Faraday Cups DTL

Number of devices		1
Aperture radius	mm	15
Length w/o chamber	mm	150
Number of pneum. drives		1
Radius of Cup active area	mm	10
High voltage	kV	1
Induction by permanent magnets	mT	10
Number of ranges for electronics		3
Full scale	mA	1, 10, 100
Current resolution	mA	0.01, 0.1, 1 (=1% FS)
Bandwidth of analog output	MHz	10
Output to control system		Integrated current

Parameters AC-Transformer

2.7.6.2.2 ACT Beam Transformers LEBT

Number of devices		1
Aperture radius of chamber	mm	80
Radius of clearance	mm	75
Length w/o chamber	mm	150
Number of ranges for electronics		3
Full scale	mA	1, 10, 100
Current resolution	mA	0.01, 0.1, 1 (=1% FS)
Droop	% for 100 µs	< 1
Analog bandwidth (achieved)	MHz	0.5
Analog bandwidth (projected)	MHz	1
Acquisition bandwidth	MHz	2
Interlock generation source		yes
Reaction time interlock generation	μs	2

Parameters SEM-Grid

2.7.6.3.2 Profile Wire Grids DTL

Number of devices		1
Aperture radius	mm	17.5
Length w/o chamber	mm	150
Number of stepping motor devices		2
Detection area	mm ²	32 x 32
Wires per plane		32
Wire spacing	mm	1
Wire thickness	mm	0.1
Number of ranges for electronics		5
I/U conversion	μA/V	0.01 100

Parameters BPM / Phase Probe MEBT

2.7.6.5.1 Combined BPM-Phase Probe MEBT, DTL

Number of devices		9
		17.5
Aperture radius	mm	17.5
Radius of clearance	mm	30
Length w/o chamber	mm	40
Pre-amplifier type		broadband
Number of ranges for pre-amplifier		3
Dynamic range	dB	80
Analog bandwidth	GHz	3
Acquisition bandwidth for position	MHz	1
Position resolution @ 1 MHz	mm	1
Position resolution for one macro- pulse	mm	0.3
Accuracy	mm	1
Phase resolution	deg	1

Parameters BPM / Phase Probe Inflection

2.7.6.5.2 Combined BPM Phase Probe Inflection, DUMP

Number of devices		4
Aperture radius (inflection)	mm	20
Aperture radius (dump)	mm	50
Radius of clearance	mm	25
Length w/o chamber	mm	40
Pre-amplifier type		broadband
Number of ranges for pre-amplifier		3
Dynamic range	dB	80
Analog bandwidth	GHz	2
Acquisition bandwidth for position	MHz	1
Position resolution @ 1 MHz	mm	1
Position resolution for one macro- pulse	mm	0.3
Accuracy	mm	1.5
Phase resolution	deg	1

Parameters Bunch Structure Monitor

2.7.6.6 Bunch Structure Monitor

Number of devices		1
Aperture radius	mm	50
Clearance	mm ²	75 x 75
Length w/o chamber	mm	400
High over all	m	2
Voltage for electric field box	kV	30
Voltage of energy analyzer	kV	±5
Diameter MCP	mm	70
Voltage MCP	kV	2
Voltage phosphor	kV	5
CCD camera resolution		SVGA
Refresh rate	fps	>4
Resolution	deg	1

