

Beam Diagnostics at CERN's Linac-4

Ditanet Workshop Massy-Palaiseau (Paris) 26 & 27 September 2011 Uli Raich CERN BE/BI

Ditanet Workshop Paris 2011

Uli Raich for the CERN BE/BI team

1

The LHC and its injectors

Ditanet Workshop Paris 2011

Why an injector upgrade?

Performance limitations: The nominal luminosity can be reached with the current injector chain but the ultimate luminosity needs higher brightness, which cannot be achieved with the current chain.

Reliability: Linac-2, Booster and PS are old machines which had problems in the past. Vacuum leaks, radiation damage on the PS magnets etc.

Nominal	1 x 10 ³⁴ cm ⁻² s ⁻¹	1.15 x 10 ¹¹ ppb
Ultimate	2.5 x 10 ³⁴ cm- ² s ⁻¹	1.7 x 10 ¹¹ ppb

A new injector chain for the LHC

Ditanet Workshop Paris 2011

First phase of injector upgrade: Linac-4

Current State

Ditanet Workshop Paris 2011

352.2 MHz

Linac-4 parameters

Ion Species	H-	
Output Energy	160	MeV
Bunch Frequency	352.2	MHz
Max. Repetition Rate	2	Hz
Max. Pulse length	1.2	ms
Max. Beam Duty Cycle	0.24	%
Beam Chopping Factor	62	%
Chopping scheme	222 tran	smitted, 133 empty buckets
Source current	80	mA
RFQ output current	70	mA
No. of particle per pulse	1014	
Transverse emittance	0.4	π mm mrad

Linac-4 Layout

Ditanet Workshop Paris 2011

Parameters to be measured

- Intensity at different energies (connected to interlock system)
- Beam trajectory and energy (phase)
- Beam profile
- Energy spread, will be measured at low energy up to 3 MeV only
- Transverse emittance at 45 keV, 3 Mev, 12 MeV, 160 MeV
- Chopping efficiency
- Bunch shape
- Beam loss (connected to interlock system) max. beam loss: 1 W/m not more than 1 full beam pulse may be lost
- Diagnostics for charge exchange injection into the Booster

Source and LEBT

Ditanet Workshop Paris 2011

Faraday Cup

- Source intensity measured by a retractable Faraday
 Cup
- Secondary electron emission will be suppressed by polarization voltage which also eliminates parasitic electrons created in the source (HV installation to be done)
- Pneumatic in/out mechanism on PLC like LEIR is available
- Oscilloscope will be used for signal observation
- For final operation a 1 MHz sampling ADC is foreseen

SEMGrids for Profile Meas.

- SEMGrid resolution: up to 0.5mm, up to 36 wires
- New analogue electronics for 36
 under design
- Needs time resolved measurements (200 kHz)
- New VME readout card has been developed (36 channels), series of 50 cards have been produced
- In/out mechanism by motor with PLC control

Ditanet Workshop Paris 2011

Transverse Emittance Measurement

Slit and grid phase space scanner

L-shaped 0.1mm slit moves under 45 degrees

Slit and grids move independently Positioning precision: 50 µm Movement PLC controlled

Slit and grids mounted in 2 independent vacuum boxes which can be separated

Horizontal and vertical SEMGrid

- wire distance .75 mm
- 40 signal wires
- readout with home built 36 channel 250 kHz ADC
- time resolved profiles

Faraday Cup

Ditanet Workshop Paris 2011

Emittance Evaluation

Pseudo Scubexx evaluation

Ditanet Workshop Paris 2011

400

350

300

250

200

150

100

50

0 ·

-50

Signal [a.u.]

352.2 MHz

Source Test Stand – Measurements Examples

Profile Measurement with Slit and Faraday Cup

ES_2011_5_19_14_21_52_H_Profile_600-0-0000.csv ES_2011_5_19_14_49_50_H_Profile_600-0-1000.csv

ES_2011_5_19_15_46_16_H_Profile_600-0--1000.csv

20

30

40

10

Emittance-meter measurement after 1st solenoid

Ditanet Workshop Paris 2011

-40

-30

-20

-10

0

Horizontal Position [mm]

RFQ + 3 MeV

3 MeV Measurement line for commissioning only

Ditanet Workshop Paris 2011

Ditanet Workshop Paris 2011

Water cooled

surface.

Ditanet Workshop Paris 2011

- Losses at 160 MeV must be minimized
- Chopper eliminates unstable beam and during rise of the Booster distributor
- Chopped beam is injected into the RF buckets of the Booster
- Correct functioning of the chopper must be monitored

Longitudinal Painting for maximum Brightness

Basic idea:

- Saw-tooth shape energy offset (w.r.t PSB synch energy) variations of Linac4 beam
- Switch beam on and off if it is inside bucket (with margin)
- Inject into waiting accelerating bucket !!
- Longitudinal painting is baseline to fully profit from the increased PSB injection energy

24

Ditanet Workshop Paris

Functioning of Halo Monitor

Ditanet Workshop Paris 2011

Uli Raich for the CERN BE/BI team

27

Photo of Halo Monitor

Individual buckets will be chopped out

352 MHz <> 2.8 ns between buckets

Must be able to measure 1000 ions in the chopped beam in the vicinity of 5 10^8 ions

Beam traverses thin carbon foil and creates secondary Electrons which are accelerated towards a Phosphor screen

Monitor can be gated off during the intense beam and switched on within 500 ps

Bunch Shape Monitor

- Device built at INR Troitsk
- Will be assembled in October and tested on the 3 MeV measurement line

Ditanet Workshop Paris 2011

Wire Scanners

Uses carbon wires Beam pulse restricted to 100 μs for heating reasons

Ditanet Workshop Paris 2011

SEMGrid Wires and Wire Scanners

- Simulations of energy deposition done
- Simulation of signal levels to be expected
- New, time resolved electronics under preparation
- Fabrication of grids with carbon wires

40 mA, 400 $\mu s,\,\sigma_x\text{=}1mm,\,\sigma_y\text{=}2mm$

Current Transformers

Good magnetic shielding avoids interference from nearby pulsing quads

Shielding simulation and test measurements have Been done

Typical Transformer Signal

Ditanet Workshop Paris 2011

Uli Raich for the CERN BE/BI team

Calibration signal before each beam pulse

Digitization of 400 µs pulse at 10 MHz

Acquisition of Booster distributor timings

Measures

- total intensity
- intensity per Booster ring

Background suppression by software

3 BPMs 1 BCT 1SEMGrid

Very little space, needed dedicated design for all devices

Ditanet Workshop Paris 2011

Uli Raich for the CERN BE/BI team

34

Inter-tank regions

Ditanet Workshop Paris 2011

Pick-Ups: What should be measured?

Absolute beam position with respect to an external reference.

Relative beam intensity measured by two consecutive pick-ups. Absolute beam intensity after calibration with BCT.

Absolute beam phase with respect to distributed RF reference.

List of instruments

Instrument	number	location	energy	details
Faraday Cup	2	LEBT	45 KeV	only scope
Emittance meter	1	LEBT, MEBT	45 KeV 3 MeV – 12 MeV	
BPMs	31	MEBT - Booster	3 MeV – 160 MeV L2-Booster transfer	Pos, intensity Phase
SEMGrids	18	LEBT – Booster	45 KeV – 160 MeV	
Transformers	16	LEBT - Booster	45 KeV – 160 MeV	
BSM	1	MEBT - PIMS	3 MeV – 160 MeV	Russian coll
Halo Monitor	1	MEBT	3 MeV	M. Hori (finished)

List of Instruments

Instrument	number	Location	energy	details
Wire Scanners	6	MEBT, CCDTL, PIMS	3 MeV – 160 MeV	
BLMs	26	MEBT - Booster	3 MeV – 160 MeV	
TV screens	7	Booster inj	160 MeV	Emittance + inj.
Laser Wire tests	1	MEBT - Booster	3 MeV – 160 MeV	R&D for SPL