

Challenges for the LIPAc Ionization Profile Monitor (IPM)

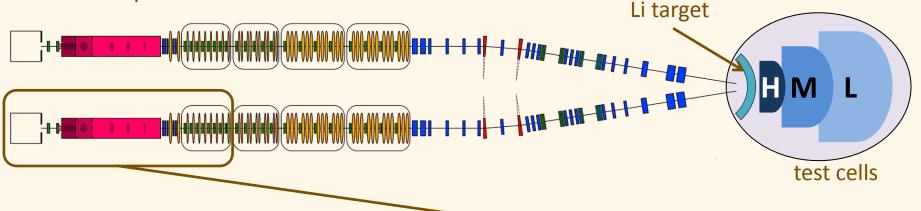
Jan Egberts^{1,2,3}, Philippe Abbon¹, Hervé Deschamps¹, Fabien Jeanneau¹, Jacques Marroncle¹, Jean-Philippe Mols¹, Thomas Papaevangelou¹,

¹⁾ CEA Saclay ²⁾ École Doctorale MIPEGE, Université Paris Sud XI ³⁾ Ditanet, FP7, Marie Curie

Outline

- LIPAc Accelerator (IFMIF EVEDA)
- IPM Characteristics
- Challenges
 - Background Radiation
 - High Beam Current
- Conclusion

jan.egberts@cea.fr



LIPAc Accelerator

IFMIF: International Fusion Material Irradiation Facility

- Beam current: 2 x 125 mA cw deuterium
- Energy: 40 MeV
- Beam power: 2 x 5 MW

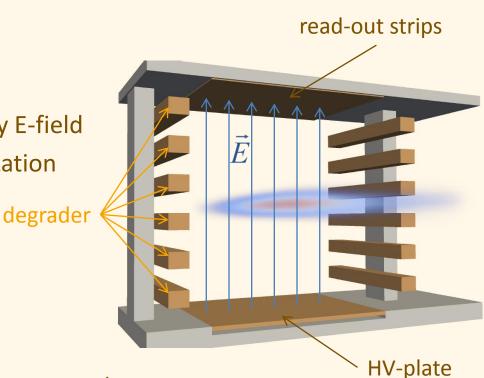
neutron source: 10¹⁷ n/s

LIPAc: Linear IFMIF Prototype Accelerator

Prototype limited to 1 x 125 mA cw @ 9 MeV, 1.125 MW

jan.egberts@cea.fr

IPM – Characteristics



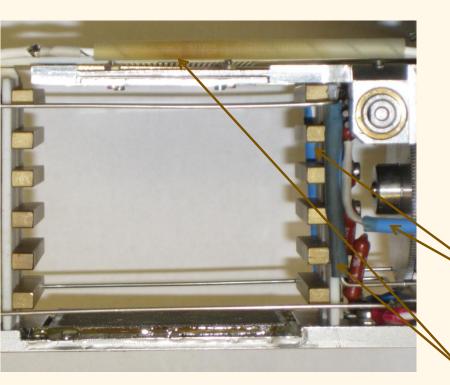
Principle of Operation:

- Beam ionizes residual gas
- Electrons / ions are extracted by E-field
- Beam profile derived from ionization current

LIPAc Challenges:

- Limited space
 - \Rightarrow Compact design (wrt. large aperture)
- High background radiation (~7 kSv/h close to the beam dump)

Irfu CEC


saclay

jan.egberts@cea.fr

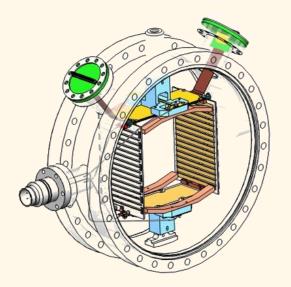
Mainly radiation hard materials used, like:

metals, ceramics, epoxy glass, indium joints...

For radiation weak materials:

- Front-end electronics at remote distance and shielded
- Resistors are well shielded
- Flat resistors used to minimize irradiation

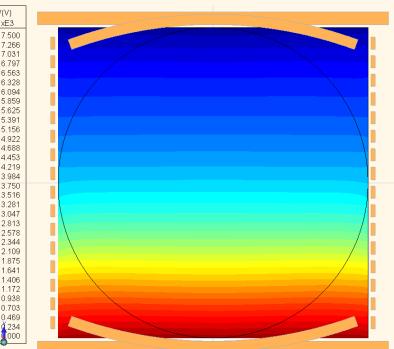
Virtually no radiation effects on plastics that were shielded by the beam pipe / the IPM


Strong radiation effects on plastics of the IPM prototype after tests at GSI

l r f u

saclay

jan.egberts@cea.fr



Design results:

- Depth of 100 mm with an aperture of 150 mm
- ✤ E-field uniform within ~ 3%

Final Design Challenges:

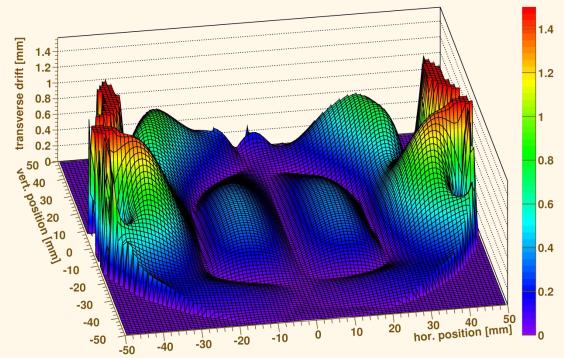
- ✤ Lack of space ⇒ very compact design required
- ✤ High radiation level ⇒ radiation hard components exclusively
- ✤ Large aperture of 150 mm

Final Design

lrfu

(e)

saclay


jan.egberts@cea.fr

Particle Tracking – Ion Displacement

Neglecting Space Charge Effect!

Simulation of the Transverse Ion Drift in the el. Field

Particle Tracking: Transverse displacement during ion drift versus starting position

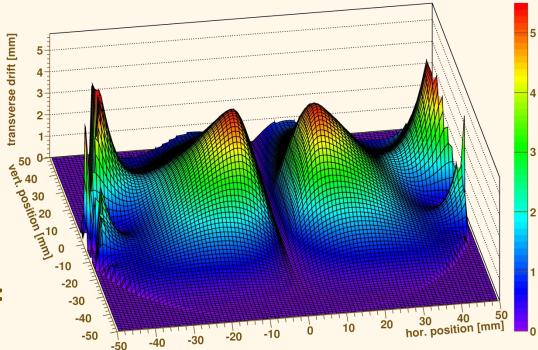
In beam region:

Displacement < 500 μm

lrfu

saclay

jan.egberts@cea.fr

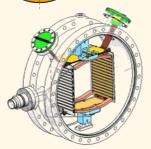

Particle Tracking – Ion Displacement

Transverse Ion Drift with a Beam of 125 mA

Space Charge for 125 mA Beam

Particle Tracking: Transverse displacement during ion drift versus starting position

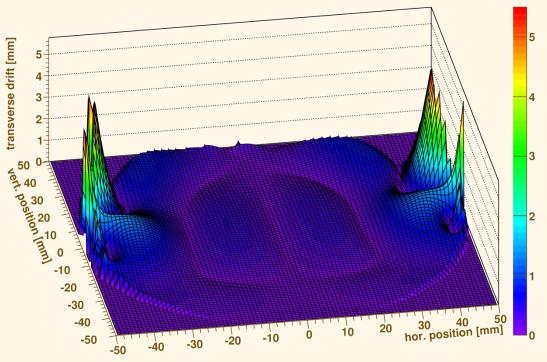
With space charge of 125 mA: Displacement > 5 mm



lrfu

saclay

jan.egberts@cea.fr

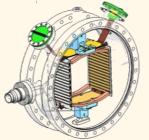


Particle Tracking: Transverse displacement during ion drift versus starting position

Tracking w/o space charge in same scale!!!

Neglecting Space Charge Effect!

Simulation of the Transverse Ion Drift in the el. Field


saclay

jan.egberts@cea.fr

Particle Tracking – Resulting Profile

Profile at asymmetric 7.5 kV

Resulting Profile: Strong Distortions due to space charge

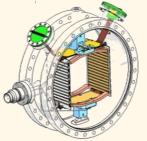

> original beam profile measured profile (simulation)

Signal / a.u. Signal / a.u. Signal / a.u. **Measured Profile Beam Profile** 12000 10000 8000 6000 4000 2000 5 -15 -10 -5 0 10 15 20 25 Position / mm

jan.egberts@cea.fr

* Increase electric field

* Use magnetic field guidance


* Apply correction algorithm

jan.egberts@cea.fr

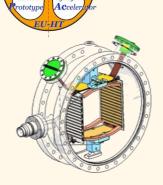
Space Charge Effect – Electric Field

* Increase electric field

- ✤ Just minimizing effects
- Limited voltage applicable
- * Use magnetic field guidance

* Apply correction algorithm

Profile at symmetric \pm 10 kV Signal / a.u. 5000 0005 Measured Profile **Beam Profile** 20000 15000 10000 **V** • 5000 n -20 -10 10 0 20 Position / mm


Electric field generated by \pm 10 kV instead of 7.5 kV

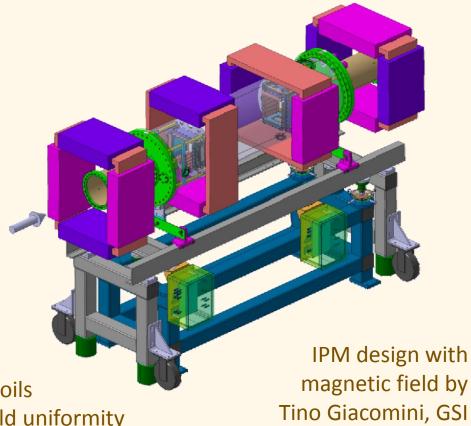
saclay

jan.egberts@cea.fr

IFMIF

EVED

Ifmi

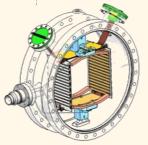

* Increase electric field

- Just minimizing effects
- Limited voltage applicable

* Use magnetic field guidance

- Space consuming due to:
 - Magnetic field compensation coils
 - Higher demands on electric field uniformity

* Apply correction algorithm

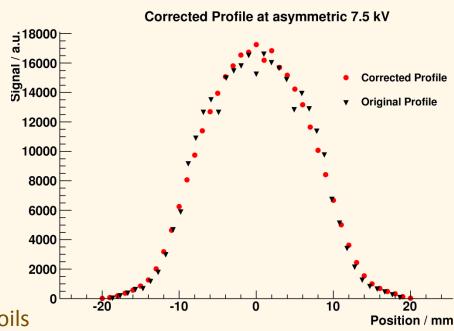


saclay

jan.egberts@cea.fr

Space Charge Effect – Correction Algorithm

* Increase electric field

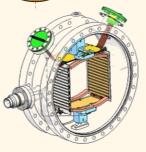

- Just minimizing effects
- Limited voltage applicable

* Use magnetic field guidance

- Space consuming due to:
 - Magnetic field compensation coils
 - Higher demands on electric field uniformity

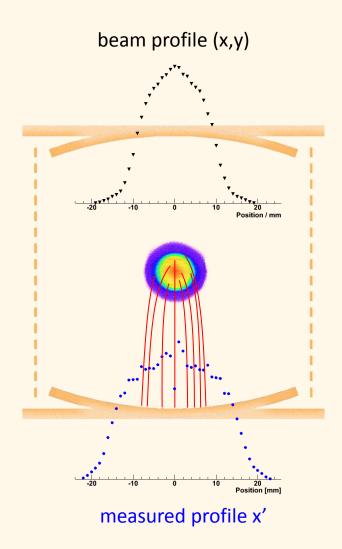
* Apply correction algorithm

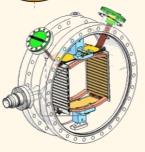
Risk of distortions in case of malfunctioning



lrfu

saclay

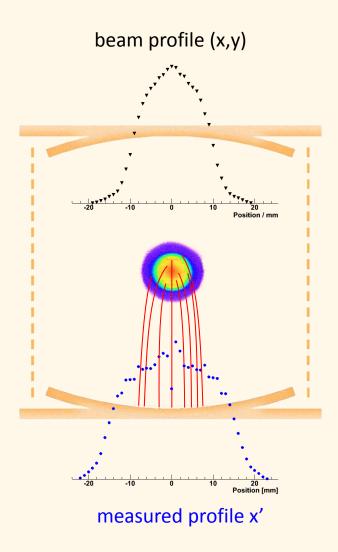

jan.egberts@cea.fr



Idea:

- Calculate space charge force
- Determine ion displacement at each position
- Correct the profile

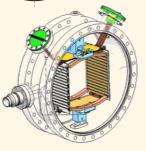
Idea:


- Calculate space charge force
- Determine ion displacement at each position
- Correct the profile

Problem:

Beam particle distribution required to calculate space charge force

Approach:


Assume beam distribution....

Irfu

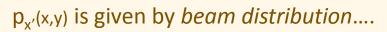
jan.egberts@cea.fr

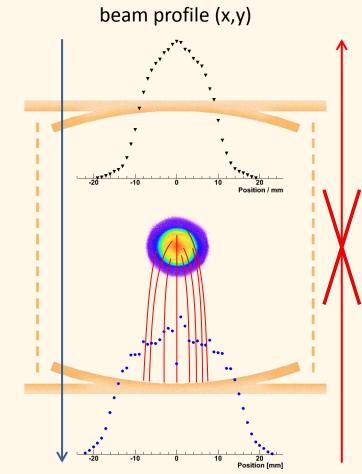
Idea:

- Calculate space charge force
- Determine ion displacement at each position
- Correct the profile

Problem:

Beam particle distribution required to calculate space charge force


Approach:


Assume beam distribution....

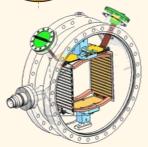
Problem:

No bijective mapping between (x,y) and x' *Approach:*

Apply statistics: $g(x') = \sum p_{x'}(x,y) \cdot (x,y)$

measured profile x'

lrfu


œ

saclay

jan.egberts@cea.fr

How to find the proper beam distribution?

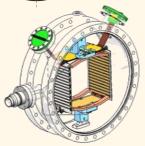
Idea:

Vary test distribution until self-consistent solution is found!

Possible criteria for self-consistency:

RMS (2. distribution moment)

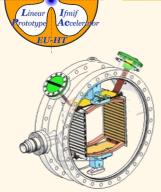
 \rightarrow Gauss


 \rightarrow strong distortions for non-Gaussian beams $\bigcirc \bigcirc \bigcirc \bigcirc$

jan.egberts@cea.fr

How to find the proper beam distribution?

Idea:


Vary test distribution until self-consistent solution is found!

Possible criteria for self-consistency:

- Beam position (1. distribution moment)
- RMS (2. distribution moment)

EVEDA

IFMIF

How to find the proper beam distribution?

Idea:

Vary test distribution until self-consistent solution is found!

Possible criteria for self-consistency:

- Beam position (1. distribution moment)
- RMS (2. distribution moment)
- Skewness (3. distribution moment)

unaffected by space charge

jan.egberts@cea.fr

How to find the proper beam distribution?

Idea:

Vary test distribution until self-consistent solution is found!

Possible criteria for self-consistency:

- Beam position (1. distribution moment)
- RMS (2. distribution moment)
- Skewness (3. distribution moment)
- Kurtosis (4. distribution moment)

unaffected by space charge

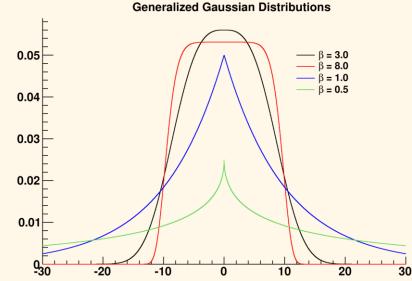
\rightarrow <u>two</u> degrees of freedom!

e

saclay

jan.egberts@cea.fr

What could be a proper test distribution?

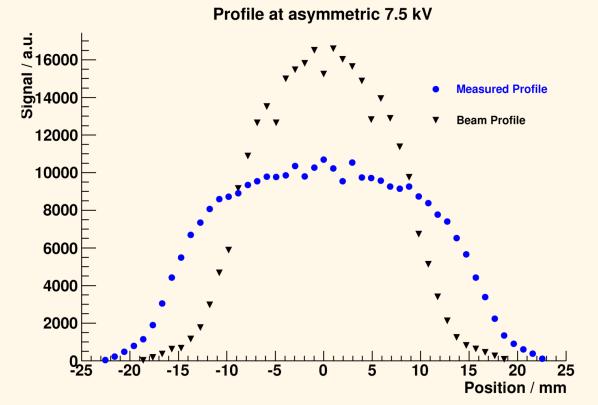

Candidate for test distribution: Generalized Gaussian

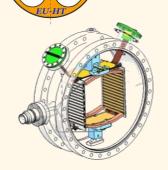
$$p_{\alpha,\beta,\mu}(x) = \frac{\beta}{2\alpha\Gamma(1/\beta)} e^{-(\frac{|x-\mu|}{\alpha})^{\beta}}$$

 $\boldsymbol{\mu}$ given by profile center

 \rightarrow two degrees of freedom!

Cover any shape ranging from peaked Gaussian to rectangular distributions!


Irfu CCCC


saclay

jan.egberts@cea.fr

Simulation beam profile measurement:

IFMIF

Linear

rototype

EVEDA

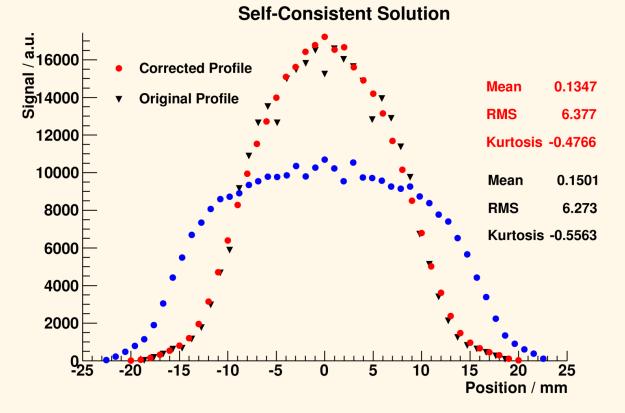
Ifmif

Accele

Irfu CCC saclay

jan.egberts@cea.fr

Example of a self-consistent solution:

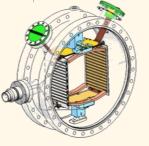

Parameters of test distribution: RMS: 6.30 mm Kurtosis: -0.50

Consistent with:

RMS: 6.38 mm Kurtosis: -0.48

Original beam profile:

RMS: 6.27 mm Kurtosis: -0.56


lrfu

œ

saclay

jan.egberts@cea.fr

IFMIF

EVEDA

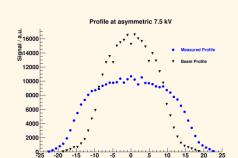
Ifmif Accel

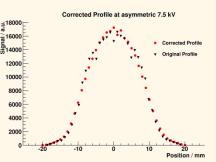
<u>Advantages</u>:

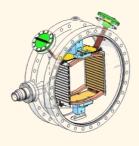
- Good correction results according to simulations
- Generalized Gaussians grant wide range of possible profile shapes
- Cheap no additional hardware components required
- Option to correct for other well-known distortions

<u>Disadvantages</u>:

- Still in a very preliminary phase!
- Not yet practically tested!
- No correction possible for profiles that cannot be approximated by generalized Gaussians!

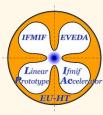



jan.egberts@cea.fr


Conclusion

- IPM works well at low charge density beams
- IPM designed to withstand high radiation background
- Three options for space charge compensation:
 - Magnetic field
 - Increased electric field
 - Correction algorithm
 - Magnetic field solution hardly feasible due to lack of space
 - Proposed Solution:

Correction algorithm with increased electric field to reduce effects of potential algorithm failure



saclay

jan.egberts@cea.fr



Backups

lrfu œ saclay

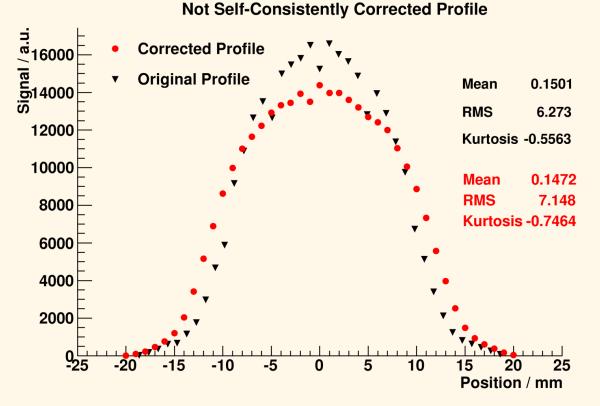
jan.egberts@cea.fr

IFMIF

EVEDA

Ifmif Accel

Example of a not self-consistent solution:


Parameters of test distribution: RMS: 8.72 mm Kurtosis: -0.81

Not consistent with:

RMS: 7.15 mm Kurtosis: -0.75

Original beam profile:

RMS: 6.27 mm Kurtosis: -0.56

lrfu

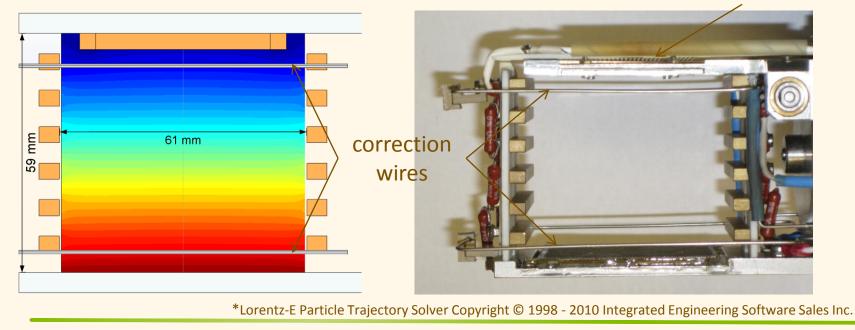
œ

saclay

jan.egberts@cea.fr

Prototype Design

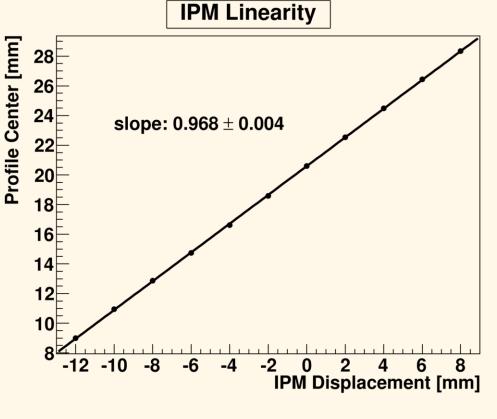
lrfu


saclay

IPM Prototype Design

- Charge collected on 32 strips with 1.25 mm pitch
- Uniform electric field required to conserve beam profile
- Prototype designed based on FEM E-field simulations*
- Internal dimensions: 61 mm x 59 mm x 40 mm
- Voltage applied: 5000 V (E = 833 V/cm)

read-out strips



Field Uniformity Test

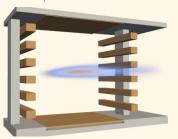
- Move IPM in 2 mm steps perpendicular to the beam
- Plot profile center versus IPM position
- Linear response over all active area

Good field uniformity

Beam: 30 μA Ca¹⁰⁺

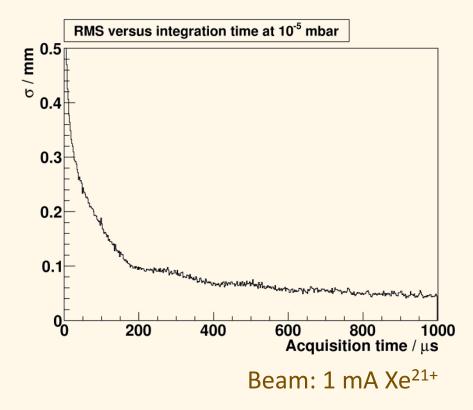
saclay

IFMIF


EVEDA

Ifmif Accel

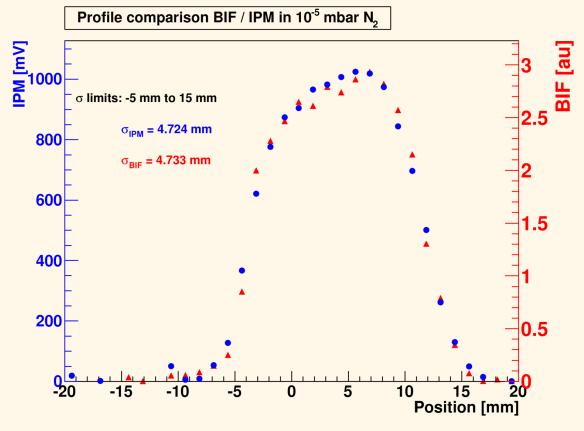
jan.egberts@cea.fr



Prototype Test at GSI

Position Resolution

- Fluctuation of beam center versus data acquisition time
- 120 μA Xe²¹⁺, 10⁻⁵ mbar N₂
- ↔ Plateau of < 100 μ m at ~1kHz



Prototype Test at GSI

BIF Comparison

Beam: 1 mA Xe²¹⁺

10⁻⁵ mbar N₂

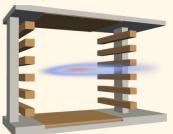
BIF: <u>Beam Induced</u> Fluorescence

BIF Monitor based on light emitted by atoms excited by the beam

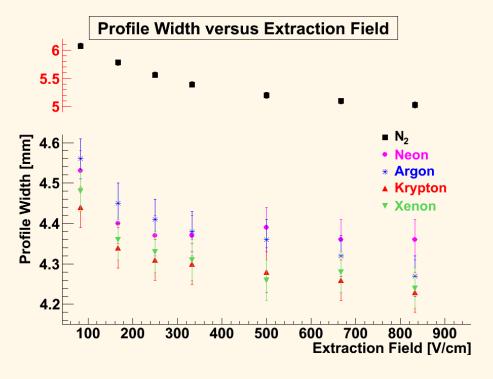
BIF profiles acquired by Frank Becker, GSI

lrfu

œ


saclay

jan.egberts@cea.fr



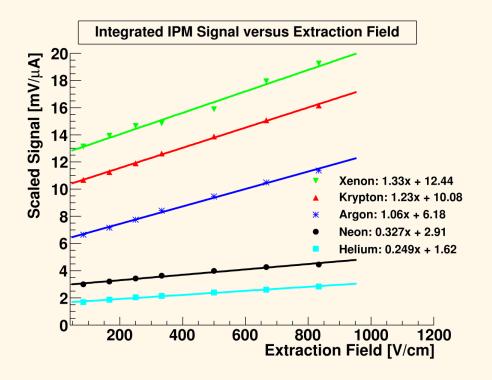
- Profile width decreases with higher extraction fields
- Plateau at a few kV
- Effect stronger for molecular
 N₂ than for atomic noble
 gases

E-field dominant at 500 - 1000 V/cm

Beam: 1 mA Xe²¹⁺

saclay

jan.egberts@cea.fr



Signal Amplification

- Total strip current plotted versus extraction voltage
- Signal rises linearly

Hypothesis: Secondary electron emission during ion collection

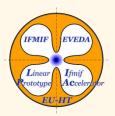
$$\Rightarrow \left| ec{E}
ight| \propto E_{_{KIN}} \propto SEM$$

Beam: 1 mA Xe²¹⁺

Irfu CCCC

IFMIF

rototype


EVEDA

Ifmif

Accele

saclay

jan.egberts@cea.fr

Secondary Electron Yield Comparison

	Magnuson ¹	Carlston ²	Zalm ³	Baragiola ^{4,5}	IPM
Не				0.39	1.28
Ne	0.25	0.3	0.35		0.92
Ar	0.21	0.33	0.29	0.28	1.01
Kr	0.2	0.3	0.29	0.25	0.69
Хе	0.14	0.2	0.19		0.53

Secondary Electron Emission from IPM measurements and literature

Oxidation layer on read-out strips may increase SEE yield

1. Magnuson, et al. "Electron ejection from metals due to 1- to 10-keV noble gas ion bombardment. I. Polycrystalline Materials", 1963, Physical Review, Vol. 129, pp. 2403-2409

2. **Carlston, et al.** *"Electron ejection form single crystals due to 1- to 10-keV noble gas ion bombardment",* 1965, Physical Review, Vol. 139, pp. A729-A736

3. Zalm, P.C. and Beckers, L.J. "Ion-induced secondary electron emission from copper and zinc", 1985, Journal of Surface Science, Vol. 152, pp. 135-141

4. Baragiola, et al. "Electron emission from clean metal surfaces induced by low-energy light ions", 1979, Physical Review B, Vol. 19, pp. 121-129 5. Baragiola, et al. "Ion-induced electron emission from clean metals", 1979, Journal of Surface Science, Vol. 90, pp. 240-255

(e)

saclay

lrfu

Secondary Electron Yield Comparison

	Magnuson ¹	Carlston ²	Zalm ³	Baragiola ^{4,5}	IPM
Не				1.47	1.47
Ne	1.14	0.97	1.13		1.06
Ar	0.95	1.06	0.94	1.06	1.15
Kr	0.91	0.97	0.94	0.94	0.79
Хе	0.64	0.64	0.61		0.61

Secondary Electron Emission normalized on mean of Ne, Ar and Kr

Good agreement with literature values for normalized yields

1. Magnuson, et al. "Electron ejection from metals due to 1- to 10-keV noble gas ion bombardment. I. Polycrystalline Materials", 1963, Physical Review, Vol. 129, pp. 2403-2409

2. **Carlston, et al.** *"Electron ejection form single crystals due to 1- to 10-keV noble gas ion bombardment",* 1965, Physical Review, Vol. 139, pp. A729-A736

3. Zalm, P.C. and Beckers, L.J. "Ion-induced secondary electron emission from copper and zinc", 1985, Journal of Surface Science, Vol. 152, pp. 135-141

4. Baragiola, et al. "Electron emission from clean metal surfaces induced by low-energy light ions", 1979, Physical Review B, Vol. 19, pp. 121-129 5. Baragiola, et al. "Ion-induced electron emission from clean metals", 1979, Journal of Surface Science, Vol. 90, pp. 240-255

(e)

saclav

lrfu

IPM Test at CEA Saclay

High Current Test

IPHI: Injecteur de Protons à Haute Intensité (I < 100 mA; E < 95 keV)

- Test at IPHI source
 - cw or pulsed
 - ✤ Low energy ⇒ high ionization cross section
 - No collimation \Rightarrow IPM is irradiated by beam
- IPM operational up to 10 mA cw
 (I_{loniz} comparable to LIPAc)
 - For I > 10 mA: tripping power supply probably due to primary particle bombardment
- IPM tested up to 20 mA in 10 % duty cycle

Irfu CCCC

saclay

jan.egberts@cea.fr

lowest current measurable at IFMIF:

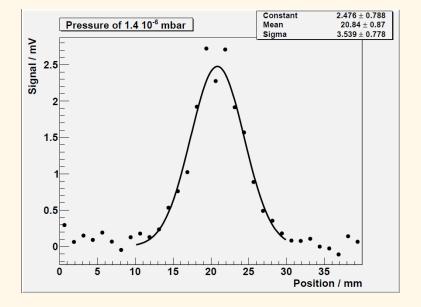
measurable for 30 μA ⁴⁸Ca¹⁰⁺ at 1.4·10⁻⁶ mbar
 Z² dependence of ionization cross section:

 $30 \ \mu A \ ^{48}Ca^{10+} \Leftrightarrow 300 \ \mu A \ D^+$

pressure scaling:

 $300 \ \mu\text{A} \cdot (1.4 \cdot 10^{-6} \text{ mbar} / 10^{-8} \text{ mbar}) = 42 \text{ mA at } 10^{-8} \text{ mbar},$

or


 $300 \ \mu\text{A} \cdot (1.4 \cdot 10^{-6} \text{ mbar} / 10^{-7} \text{ mbar}) = 4.2 \text{ mA at } 10^{-7} \text{ mbar}$

œ

saclay

jan.egberts@cea.fr

Data Readout

Front-End (FE) electronics:


FE electronics mounted on the beam pipe

- Transimpendance card / logarithmic card:
 - \star Continuous multiplexed output every \approx 2 μs
- Integrating card:

 \ast Integration time between 81 μs and 64 ms - or even more...

Data Acquisition:

- Acqiris Card:
 - 8 bit ADC
 - I GHz sampling rate with 2MB memory depth
 - 2133 acquisitions per profile up to 800 profiles per data transfer

lrfu

œ

saclay