

OVERVIEW OF THE BEAM DIAGNOSTICS FOR THE DRIVER OF SPIRAL2

Patrick AUSSET for the Spiral 2 Diagnostics Team

Introduction

SPIRAL2 Driver and Beam Characteristics

	Q/A	I (mA)	Energy (Mev/u)	CW max beam Power (KW)	
Protons	1/1	5	2 - 33	165	 Fast chopper in the MEBT line: Selection of 1/50 up to 1/10⁵ bunch C.W. mode Low Duty Factor Pulsed Mode of Operation (slow chopper)
Deuterons	1/2	5	2 - 20	200	
Ions	1/3	1	2 - 14.5	45	
Ions (option)	1/6	1	2 - 8	48	

Spiral2 Beam Transverse Emittance Measurements in the L.E.B.T. Emittancemeter H + V Shared LEBT line

LEBT ions

Ions Source

Q/A = 1/3

Emittancemeter: Allison Scanner Max. diameter beam: 80 mm

D⁺ source

- Stroke: 120 mm
- Max measurable angle: ± 100mrad
 - H.V. max: 2.8 kV
- Max Beam power: 300 W
- Beam Expected emittance: 1.6π mm mrad rms (N)

Diagnostics tests at LPSC and Irfu @ CEA Saclay

Patrick Ausset - Ditanet workshop - September 26th, 27 th - 2011 Overview of the beam diagnostics for the driver of SPIRAL 2 Page 6

INTERMEDIATE TEST BENCH

Beam Position Measurement in the LINAC. Electronics

HEBT LINES: GENERAL CONFIGURATION

• LHS3S : From the dipôle LHS3S-D11 (inside the LHE2). Future option of the project L=9.5m

High Energy Beam Transfert line: diagnostics

Patrick Ausset - Ditanet workshop - September 26th, 27 th - 2011 Overview of the beam diagnostics for the driver of SPIRAL 2 Page 12

HEBT lines: BLM detectors configurations

- LINAC: 1 detector per cryomodule along linac
- HEBT: 11 detectors in HEBT lines

Expected output: longitudinal profile of counting rates

Distortions factors:

- X-ray background
- activation build-up
- scattering/absorption on beam line elements
- complex profiles losses

HEBT lines: BLM detectors final design

Slide by courtesy of Florin Negoita

The results are consistent with expectations and values used in simulations

Background count rate at 1200 V as function of threshold.

Test of the final design of BLM detectors

The results are consistent with expectations and values used in simulations.

Slide by courtesy of Florin Negoita

Page 15

0

-25

-20

-15

-10

-5

-0,01 -0,02

Bunch length measurements

-Faraday cup -Residual ionisation gas detector

ACKNOWLEDGMENTS

- Special Thanks to the contributors to SPIRAL2 diagnostics
 - Ganil : Profilers , Faraday cups, Beam Current transformers, phase and energy measurements, controls.
 - IPNO: *B.P.M.*
 - IPNL: Thermal simulations. Faraday cup design
 - Barc Institute: BPM electronic
 - I.P.H.C : Transverse Emittancemetter , Intermediate Testing Bench.
 - C.E.A Dapnia : Controls
 - NIPNE : Beam Loss Monitors
 - ….And many other people