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Specification                          Functional

General description of physical processes, 

over half of the text

1. Important to have basic process described 

which should be monitored, because of

changes in functional requirements may 

change and reason for monitoring not clear 

2. Complete requirements very useful to be 

defined, including description of 

measurement, reliability consideration, data 

presentation and logging, …; all may 

have an influence of the system design   



Specification: Beam Loss Durations and Protection Systems

4 turns (356 s)

10 ms

10 s

100 s

LOSS DURATION

Ultra-fast loss

Fast losses

Intermediate losses

Slow losses

Steady state losses

PROTECTION SYSTEM

Passive Components

+ BLM (damage and quench prevention)

+ Quench Protection System,         
QPS (damage protection only)

+ Cryogenic System

Since not active protection possible for ultra-fast losses => passive system

Classification loss signals  to be used for functional and technical specification
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Specification: The Active Protection System and Involved Systems

SOURCES of 

beam losses

1. User/operator

2. PC failures

3. Magnet failures

4. Collimators 

failures

5. RF failures

6. Obstacles

7. Vacuum

8. …

HERA

Tevatron, 
LHC

Dump
system

Interlock
system

Dump

requests

Study of equivalent system to be used for 

functional and technical specification 
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One of the most spectacular quench tests: generate millisecond scale 
losses using with Wire Scanner at 3.5 TeV.
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FLUKA simulations

Max Edep

FLUKA:  62.5 mJ/cc
QP3:      38 mJ/cc  (preliminary)  
we call it a good agreement
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Shower simulation could be 

accurate to few 10% in transverse 

tails of 20 to 30 cm
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Reliability: Safety System Design Approach

Damage

(system integrity)

Quench

(operational

Efficiency)

Scaling:

frequency of 
events

x
consequence

Failsafe

Redundancy 

Survey

Functional Check

Mean

time 

between 

failures

Methods: 

Stop of next 

injection

Extraction of 

beam

Reduction of 

operational 

efficiency

Safety ProtectionRisk Availability

SIL
ALARP

Systems:

Beam loss 
Monitors

Quench
protection

system

Interlock
system 

¨
Dump system

Design issues:

Reliable 

components

Redundancy, 

voting

Monitoring of 

drifts1 10-8 to

1 10-7 1/h
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Reliability: Failure Rate and Checks

Systems parallel + survey + functional check:

1. in case of system failure dump beam (failsafe)

2. verification of functionality: simulate measurement and comparison with 

expected result => as good as new
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systems parallel + surv. + check
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Key implementation to obtain low failure rate 
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Reliability: Check of Analog Signal Chain

Basic concept: 

Automatic test measurements in between 

of two fills (LHC), new systems: 

continuous check during operation (0.05 

Hz)

 Modulation of high voltage supply of 

chambers

 Check of cabling

 Check of components,  R- C filter

 Check of chamber capacity

 Check of stability of signal, pA to nA

(quench level region)

 Measurement of dark current

 Not checked: gas gain of chamber (only 

once a year with source)

Functional checks – Monitoring of drifts

Modulation Example

HV ripple (pp 10 v)

HV supply current

HV induced signal
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Reliability: Settings and Checks from Database to Frontend

 Setting storage in Oracle 
database

 Settings:

 Threshold values

 Voltages, currents, phase limits 
for automatic test

 Serial numbers for ever 
equipment in the acquisition 
chain

 Software version numbers

 Comparison of frontend 
settings with database every 
12 hours or after every update

 If positive hardware base 
beam permit given

 If negative after retry, manual 
intervention (no beam permit)

Corruption in frontend are more likely as in 

reference database, therefore =>

Request for comparison issued by front-end, most reliable (no software 

layers in between)  
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Reliability: Fault Tree Analysis

 The probability to have an Failure Mode A, Pr{A}, is calculated per each Failure Modes of the FMECA, given the 

hazard rate, the repair rate and the inspection period .

OR Gate

EVENT1 EVENT2

OR Gate

EVENT1 EVENT2

Damage
Risk

Blind
FEE

Blind
BEE

AND Gate

EVENT1 EVENT2

AND Gate

EVENT1 EVENT2

False Alarm
by

transmission

Optical
line 

1

Optical
line 

2

 Almost 160 Failure Modes have been defined for the BLMS using the FMD-97 standard.

Three Ends Effects:

1. Damage Risk: probability not to be ready in case of dangerous loss. 

2. False Alarm: probability to generate a false alarm.

3. Warning: probability to generate a maintenance request following a
failure of a redundant component.

Several (commercial) programs are available, which include component catalogue 



Comments to Project Planning I

 Specification (LHC observations)

 Specification changes (mainly technical, few functional changes) during 
project time due to knowledge increase (deeper understanding, reviews) 

 Iterative specification approach was needed to in cooperate continuously 
the specification changes not compromising the protection functionality and 
other requirements

 Budget (LHC observations):

 Not enought contingencies included => every time when more budget was 
needed lengthy discussion, sometimes resulting in compromises without 
considering a complete system review. Reliability and functional 
degradation possible.

 LHC BLM 33% cost overrun, reasons:

 increase of functionality (knowledge gain during design process) (30%)

 Unknown costs during planning phase (30%)

 Wrong costs estimates (30%) 

 Reviews (about 10 for the LHC system)

 Main comments: Missing written operating procedures and documentation

 Internal review: viewpoint of referees not independent enough, some times 
conflict of interest

 External review: often to short, referees become not enough familiar with 
the system

 Company review: introduce knowledge from different field (safety)
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Comments to Project Planning II

 Reliability:

 2010+2011: 4 beam aborts due to internal BLM failure (4000 monitors, 
simulated failure per year 15)  

 Failure rate estimate need frequent recalculation, because of design 
changes (iterative process) 

 Data corruption in frontends observed due to radiation induced single 
events (at surface), unreliable electrical connections (soldering), … 

27.09.2011 Beam Loss Monitoring an Overview; B.Dehning 13



27.09.2011 Beam Loss Monitoring an Overview; B.Dehning 14

Beam Loss Detectors used at CERN

N2 @ 0.4 bar

Ionisation chambers

N2 @ 1.2 bar

Cherenkov Light + PM

Aluminium Kathode

+ 

PM

Secondary

Emission

effect

Diamond

pCVD

+

sCVD

Optical fibre

+ 
SiPM (array)

CLIC

+ 
Proton transfer

pCVD amplifier
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Ionisation Chamber Simulation and Measurements

Beam

scanned

 Comparison simulation measurements

Rel. diff % Error %

Proton 13.1 11.4

Gamma 14.3 12.1

neutron 37.4 13.9

Mixed field 20.5 11.4

Ionisation chamber top view

M. Stockner, PhD thesis

LHC updates M. Sapinski

Ionisation chamber response function

Good knowledge of behaviour => 

Reliable component
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Ionisation Chamber Time Response Measurements (BOOSTER)

Chamber beam response Chamber current vs beam current

Intensity discrepancy 
by a factor two 

Intensity density: - Booster  6 109 prot./cm2, two orders larger as in LHC

FWHMe-= 150 ns

slength proton= 50 ns

80 % of signal
in one turn

Peak current 50 A
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Simulations Ionisation chambers

Coaxial Chamber
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Gain Variation of Ionisation Chambers

 30 years of operation

 Measurements done with installed 
electronic

 Relative accuracy
 Ds/s < 0.01 (for ring BLMs)

 Ds/s < 0.05 (for Extr., inj. BLMs)

 Gain variation only observed in 
high radiation areas

 Consequences for LHC:

 No gain variation expected in 
the straight section and ARC of 
LHC

 Variation of gain in collimation 
possible for ionisation 
chambers

SPS BLMs
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CERN IC 54 uC/Gy

LIC 1.4 uC/Gy

CERN

CERN



Diamonds: Beam LHC Loss Signal
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detector at a 

collimator
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spacing

Hypothesis:     

Loss due to macro 

dust particle
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Sensitivity = 0.23 uGy/V
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Diamonds: Beam LHC Loss Signal
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Diamond 

detector at a 

collimator

150 ns bunch 

spacing
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Loss due to macro 

dust particle

Zoom train 2 of 8 bunches
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Diamonds: Beam LHC Loss Signal
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Diamonds: Beam LHC Loss Signal

27.09.2011 23
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Hypothesis:     

Loss due to macro 

dust particle

Beam Dump
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Diamond and Radiation Hardness

 Top: sCVD shifted to the left 
to show that it follows the 
same degradation 
parameterization as pCVD

 Bottom: sCVD irradiation loss 
20 % of initial signal and 
drop of signal to noise from 
26 to 7 

1.5 E17 1/cm2 (MIP)

Open question: DC noise increase 

with irradiation



Diamonds in Counting Mode
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Measurement of bunch filling scheme with high dynamic

Detection system under construction for loss detection after LHC collimator

Empty 

bunch

region

Non 

colliding

bunche
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1.8 Kelvin Loss Detection

Single Particle beam test at CERN PS (20 GeV)

Under test: sCVD, Si, and LHe ionisation chamber

Next year: radiation test up to 1 MGy with online monitoring at CERN PS 

LHe ionisation
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1.8 Kelvin Loss Detection

Diamond (sCVD)

Si at 4.2 KSi at 1.8 K

Open questions: radiation hardness, DC current value, non linearity effects 

for high losses
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The BLM Acquisition System

Real-Time Processing BEE
 FPGA Altera’s Stratix EP1S40 (medium size, SRAM 

based)
 Mezzanine card for the optical links
 3 x 2 MB SRAMs for temporary data storage
 NV-RAM for system settings and threshold table 

storage

Analog front-end FEE
 Current to Frequency Converters (CFCs)
 Analogue to Digital Converters (ADCs)
 Tunnel FPGAs: 

Actel’s 54SX/A radiation tolerant.
 Communication links:

Gigabit Optical Links.
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Fully Differential Current to Frequency Converter Principle 

LHC current to frequency converter: 

1. only positive signals (limitation 

in case of signal under shoots)

2. 500 Gy radiation tolerance

Integrator Comparator

Reference current source

f = Iinput / (Qref * Tref)



Fully Differential Current to Frequency Converter Principle

Fully differential IntegratorInput 

switch

1. Specifications:

1. Dynamic range 7 orders

2. Integration window 2 us

1nA to 200mA

3. Integration window 1 s

10pA to 200mA

2. A status signal selects in

which branch of a fully

deferential stage the input

current is integrated.

3. Two comparators check the

differential output voltage

against a threshold, whenever

is exceeded, the status signal

changes to the

complementary value (0 ! 1 or

1 ! 0) and the input current is

integrated in the other branch.
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Differential Current to Frequency Converter

FRONT END

CH 1

Calibration Interface

Reset Interface

Data Out

FRONT END

CH 8

Calibration Interface

Reset Interface

Data Out

    SFP

Transceiver

Main FPGA

Data In / Out

Ext. Power

POWER SUPPLY SECTION
P
S
U
 
L
i
n
k

Fully Protected Power Channels

with Diagnosis

FILTERS & 

PROTECTIONS

OPTICAL LINK

JTAGProg. Interface

PROMProg. Interface

Temperature &

Humidity Sensor

    SFP

Transceiver
Data In / Out Ethernet LINK

ID Chip

Auxiliary ADC

for HK Monitor
Data Out HV Feedback

Available Resources: 8 Input Analog Interfaces; FPGA local or remote programming;

bidirectional optical and Ethernet link; power supplies with protection and diagnosis;

temperature and humidity measurement; ID Chip; Auxiliary ADC for Housekeeping Monitor.
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Noise

 Important for availability (false 
dumps) and dynamic range

 Main source of noise: long cables 
(up to 800 m in straight section)

 Aim: factor 10 between noise and 
threshold

 Thresholds decrease with 
increasing energy  noise 

reduction before 7 TeV

 Single pair shielded cables, noise 

reduction: > factor 5

 Development of kGy

radiation hard readout to

avoid long cables

Noise estimate in design phase with test 

installations at comparable locations
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Software Overview, Management of 

Settings
Safety given by:

 Comparison of settings at

DB and front-end

 Safe transmission of 

settings

front - end
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Software Overview, Management of 

Settings
Safety given by:

 Comparison of settings at

DB and front-end

 Safe transmission of 

settings

front - end

1. Modular design of data base very useful (if changes are needed limited impact)

1. MTF: history of equipment e.g. ionisation chamber, electronic cards, …

2. Layout: description of links between equipment

3. LSA: reference for all data needed in the front-end (some imported from 

MTF and Layout)  

2. Storage of data in frontend in FPGA memory (even here corruptions observed)

3. Master for comparison is the front-end (this allows immediate beam inhibit)

4. Design very early defined in PhD thesis on reliability (root was followed during 

project)

5. Issue of design: protection and measurement functionality are implemented in 

same front-end (review remark). 

1. Critical, because of upgrades are more often needed on measurement 

functionality compared to protection functionality

2. New design: locking of FPGA firmware, which has protection functionality 

(partial solution)

3. Occupation of FPGA by firmware too large, first estimate of occupation will  

be about 30% for new BLM systems



 Extensively used for operation verification and machine tuning

 1 Hz Logging (12 integration times)
 Integration times < 1s: maximum during the last second is logged 

 short losses are recorded and loss duration can be reconstructed (20% accuracy)

 Also used for Online Display

BLM Published Data – Logging Data – Online Display



 Extensively used for operation verification and machine tuning

 1 Hz Logging (12 integration times)
 Integration times < 1s: maximum during the last second is logged 

 short losses are recorded and loss duration can be reconstructed (20% accuracy)

 Also used for Online Display

BLM Published Data – Logging Data – Online Display

• Change of the thresholds:
• As function of loss duration

• As function of beam energy

• Will also be implemented for warm 

magnet and equipment protection 



 Extensively used for operation verification and machine tuning

 1 Hz Logging (12 integration times)
 Integration times < 1s: maximum during the last second is logged 

 short losses are recorded and loss duration can be reconstructed (20% accuracy)

 Also used for Online Display

BLM Published Data – Logging Data – Online Display

Post Mortem Data: Event triggered read out of all acquisition buffers

1. Online (after 10 s 2000 values with 40 us integration time 

2. Off line 43000 values  



 Extensively used for operation verification and machine tuning

 1 Hz Logging (12 integration times)
 Integration times < 1s: maximum during the last second is logged 

 short losses are recorded and loss duration can be reconstructed (20% accuracy)

 Also used for Online Display

BLM Published Data – Logging Data – Online Display

Fit to data in the plan signal versus

integration time => 

interception straight line parameterization => 

loss duration

Storage of several running sums allows reconstruction of duration of loss 

event (reduction of network traffic and data storage place)



Resonance Crossing – SEM signal Issue 

No signal from secondary emission monitors expected: due to ionisation in air 
at non insulated wire connection (patch boxes)
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Beam

ionisation chambers

secondary 

emission monitors

Optimized tools are very help full during commissioning 

(design during test phases)



Reserve Slides
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DADC Principle
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Input 50 ohm resistor split in two: 47 + 3 

ohm

Re-routing on the ADC buffer amplifier
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Ionisation Chamber and Secondary Emission Monitor

 Stainless steal cylinder

 Parallel electrodes distance 0.5 cm

 Diameter 8.9 cm

 Voltage 1.5 kV

 Low pass filter at the HV input

IC:

 Al electrodes

 Length 60 cm 

 Ion collection time 85 us

 N2 gas filling at 1.1 bar

 Sensitive volume 1.5 l

SEM:

 Ti electrodes

 Components UHV compatible

 Steel vacuum fired

 Detector contains 170 cm2 of 

NEG St707 to keep the vacuum 

< 10-4 mbar during 20 years

Signal Ratio: IC/SEM = 60000



ATS/Note/2011/048 (TECH), B. Dehning et al.

 Chemical Vapour Deposition (CVD) 
diamond

 IP7 collimators (TCP) – one per 
beam

 All sizable local losses also seen at 
collimators

 Injection regions – one per beam

4 Diamond BLMs for Observation



44Machine Protection PanelMay, 13th 2011

Dump on 01.05.2011 

 From fit of PM 
data

 (BLMEI.05L2.B1E10_MKI.D5
L2.B1):

 Amplitude: 0.63 Gy/s

 Width: 0.29 ms



Leakage into Cold Magnets

3.5 TeV operational collimator settings (not best possible)

No quench – consistent with BLM thresholds (64% of assumed quench level)

R.W. Assmann et al.
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Noise Level Distributions

 Procedure:

 require data 
during nominal 
operation 
conditions of 
LHC

 Choose most 
sensitive 
integration 
intervals

 Set histogram 
max value to 
lowest quench 
threshold level 
(MB-magnet) 

 Overflows are 
interpreted as 
false signals
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Post Mortem Data (some examples) 

PM application: BLM data of 0.082 sec

online available

Longer PM buffer: BLM data of 1.72 sec

offine available

43000 values (40 us)

2000 values (40 us)

Loss in a bending magnet

Monitors

Time
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Quench and Damage Levels

• High dynamic range 

dynamic
• Arc: 108

• Collimation: 1013 second 

detector

• Change of the 

thresholds:
• As function of loss 

duration

• As function of beam 

energy

246 GeV

7 TeV
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Drift times of electrons and ions (I)

Coaxial Chamber
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Post Mortem Data (some examples), Zoom 

Loss from primary event

+

dump system loss





BLM System Upgrades 
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 Online program predicting loss 
characteristics and likely loss origin, PhD

 Long cable issue in IP3

 Development of an Detector with 
intermediate measurement range

 New cables for noise channels (7 TeV
operation) 

Data set: 8.1.2010-15.1.2010

Ratio new / standart

proto type 8, aim 100



Date: 3/10/2010 12h48, 152 bunches, 150ns bunch 
spacing








