
The Diamond Libera Daemons

Michael Abbott

Diamond Light Source
michael.abbott@diamond.ac.uk

Libera Workshop 2011

1

michael.abbott@diamond.ac.uk

Libera at Diamond
At Diamond we have reimplemented or reworked most of the core
components making up Libera.

System I-Tech Diamond

Linux 2.6.20.14 2.6.30.9

Rootfs Debian base Busybox base

Libera device
driver

Original Original

Health daemon Simple PI fan
controller

PI controller with
programmable
interface

Event daemon CSPI server (None)

Clock daemon lplld clockPll

Signal conditioning ldscd Integrated into EPICS
server

System interface CSPI EPICS

Libera Workshop 2011

Libera Compatibility

• The CSPI API was orginally conceived as the common stable
interface to Libera. However:

• CSPI applications need to be compiled and linked against the
CSPI library that they’re using.

• CSPI tightly integrates all the Libera components, so Diamond
customisation would have become impractical.

• Diamond Libera components rely on the kernel driver
interface. This is stable, well defined, and well behaved.

Libera Workshop 2011

Diamond Clock Daemon

The i-Tech clock daemon was rewritten because the original
daemon failed to hold lock and keep stable phase. The Diamond
version was written to:

• Keep stable phase for months even when machine RF
frequency changes abrubptly

• Support accurate records of global synchronisation status
• Provide detailed operating status information
• Support dynamic changing of phase and frequency offsets

I-Tech subsequently rewrote lplld to address many of these
issues.

Libera Workshop 2011

RF Switches and Signal Conditioning

Libera Workshop 2011

Signal Conditioning

• Signal Conditioning algorithm computes estimates of channel
gains using information from the multiplexing switch.

• Channel gain corrections are applied directly to ADC readouts
to compensate for gain differences and drifting.

• Gain correction is vital for long term position stability,
fundamental to the design of Libera.

• Attenuation control needs to work in cooperation with signal
conditioning.

• Thus Automatic Gain Control (AGC) is integrated into signal
conditioning.

Libera Workshop 2011

DLS Signal Conditioning — Differences from i-Tech

• More flexible scheduling of signal conditioning: we normally
do a complete compensation calculation every 5 seconds.

• Interval is programmable and computation is fast.
• Amplitude and phase computed together in one calculation.
• Gain compensation settings do not need to be pre-“trained”,

no need to maintain tables of coefficients.
• Calculation of signal levels quality is more flexible, safely

rejects disturbances from injection transients.
• Detailed reports on computed coefficients available for live

inspection and archival.
• Fractional changes to coefficients applied (using IIR) to

ensure resistance against sudden changes.

Libera Workshop 2011

Diamond Automatic Gain Control

• At Diamond normally use global AGC — it’s important to
avoid attenuator changes during global feedback, so local
AGC is normally disabled.

• Local Diamond AGC implemented using FPGA MAXADC
register, so very accurate.

• Local AGC algorithm extremely simple: increment or
decrement attenuation if MAXADC out of range.

• AGC correction operates at 10 dB per second, easily fast
enough to follow machine injection.

• Diamond AGC has no notion of “power”, simply works with
attenuator settings and MAXADC readings.

Libera Workshop 2011

Diamond Signal Conditioning — CSPI Compatibility?

• Currently integrated into Diamond EPICS driver, would need
to be a separate daemon to work with CSPI.

• Diamond Signal Conditioning has more control parameters
and returns more information than the i-Tech ldscd daemon.

• Diamond AGC works in terms of attenuation in dB, no notion
of gain or mapping tables.

• Proposal currently on the table to create a separate DSC
daemon derived from the Diamond controller and maintained
by Diamond.

• Who would maintain the CSPI interface?

Libera Workshop 2011

Detailed DSC Algorithm

The following slides present some mathematical details of the
signal conditioning algorithm implemented by Diamond.

Libera Workshop 2011

Detailed DSC Algorithm: The Model

The basic model is that each channel c has gain Gc and that at
switch position n the input Xb from button b is processed by
channel cnb resulting in a measured signal of

Znb = G(cnb) · Xb

The purpose of DSC is to compute Kc ≈ G−1c so that we in fact
measure

Ynb = K (cnb) · G(cnb) · Xb ≈ Xb

In practice Gc also depends on switch position, so we work with

Ynb = Kn(cnb) · Gn(cnb) · Xb ≈ Xb

Libera Workshop 2011

Detailed DSC Algorithm: Computation

From a sufficiently long DD waveform we can compute Ynb for all
buttons and all relevant switch positions. Note that as this is IQ
data we get Y as an array of complex numbers.

Recover Znb = Ynb/Kn(cnb), assume averagec(Gc) = 1, compute

X̃b = averagen(Znb) = averagen(Gn(cnb) · Xb)

= averagen(Gn(cnb)) · Xb
≈ averagec(Gc) · Xb ≈ Xb

Then from Gn(cnb) = Znb/Xb can compute new correction K ′:

K ′
n(cnb) = X̃b/Znb

Libera Workshop 2011

Detailed DSC Algorithm: The “average”

Computing the “average” of an ensemble of complex numbers has
its complexities. Experiments on Libera show that the best way to
compute averagen(zn) is as

averagen(zn) = geon|zn| · exp(i · ∠(meannzn))

— a curious blend of arithmetic and geometric means!

geonzn = N
√∏

n
zn meannzn =

1
N

∑
n

zn

The calculation of ∠z is reliable when the values zn all have
phases with much less than 180◦ divergence. The phase
differences between amplifier channels in Libera is normally less
than 60◦.

Libera Workshop 2011

