# **Purdue CMS Analysis Facility**

**Dmitry Kondratyev**, Stefan Piperov, Norbert Neumeister

November 7, 2024 HEPiX Fall Workshop Norman, OK



## **Outline**

- CMS Experiment and its computing model
- Purdue Analysis Facility:
  - Architecture
  - User interface
  - Storage & data access
  - Scale-out methods
  - Monitoring
- Purdue AF applications

# **CMS Experiment**

### CMS detector at CERN LHC

### **CMS Collaboration**



3394 1102 282
PHYSICISTS ENGINEERS TECHNICIANS

247

57
COUNTRIES & REGIONS

## **CMS Experiment**

### LHC data collection "runs":

- Run 1: 2010 2012 (Higgs boson discovery)
- Run 2: 2015 2018
- Run 3: 2022 2026 ← we are here
- High Luminosity LHC: 2030s

CMS publishes ~100 papers per year

Most recent important CMS result:

W mass measurement (2024)





**Source: SMP-23-002** 

## **Physics Analyses at CMS**

- "Traditional" methods (still in use):
  - C++ based frameworks: CMS Offline Software (CMSSW), ROOT
  - Data processing implemented via event loops
  - User interface is just a command line
- Trends emerging in the past decade:
  - Python based frameworks
  - Array programming
  - Interactive interfaces (Jupyter)
  - Adoption of software from other domains (e.g. ML libraries)
  - Advancements in parallel & distributed computing

#### GitHub repositories of CMS physicists



Source: IRIS-HEP

⇒ Motivation to develop Analysis Facilities that natively support these methods

## **CMS Computing Model**

CMS data processing is distributed via WLCG (Worldwide LHC Computing Grid), which has a tiered structure.



### **Purdue** is a **Tier-2 site**, which means that we provide:

- Computing resources for "central" processing (MC simulations, RECO, etc.)
- Computing resources for user analyses.



## **Purdue Research Computing & CMS Tier-2**

#### **Purdue Community Clusters Program**

Opportunistic access to job slots via **Slurm**; A dedicated GPU cluster with various GPU models

#### **Dedicated CMS resources**

Cluster with 12k CPU cores; Large storage element (13PB)

#### Kubernetes cluster

CMS owns 2k CPU cores & several A100 GPUs





Purdue also hosts "Anvil" supercomputer – a part of NSF ACCESS program.

## **Purdue Analysis Facility (Purdue AF)**

### Purdue AF is an interactive environment for end-to-end CMS analyses.

- Primary work environment for majority of CMS researchers at Purdue.
- ~150 registered users, ~30 daily users
- In production since 2023
- Documentation & entry point: <a href="https://analysis-facility.physics.purdue.edu/">https://analysis-facility.physics.purdue.edu/</a>
- Open to all CMS users worldwide
  - Must have CMS affiliation & either Purdue, CERN, or FNAL account.



## **Purdue AF: Architecture**



## **Purdue AF: User Interface**



## **User Interface**

- Access from any web browser
- At login: choice of account provider and resources (CPU / RAM / GPU)
- JupyterLab interface: notebooks, terminals, editors, file browser.
  - Session keeps running for up to 14 days if user closes the browser tab.



## **User Interface**

### Custom JupyterLab extensions:

- Git
- Dask
- Resource usage monitoring







### **Advanced Access Methods**

- Web browser is the default access method, but not the only one.
- With token-based authentication, users can:
  - Connect to a running session via ssh;
  - Connect VSCode to run local notebooks with remote kernels,
     or use Purdue AF scale-out resources bypassing the web interface.



### **Software**

Software for user analyses is provided in multiple ways:

- 1. Curated software stacks based on needs of Purdue CMS users;
- Access to centrally managed software stacks via CVMFS (CERN's distributed filesystem);
  - CMSSW releases
  - Singularity images
  - etc.
- 3. Custom user-made environments.

### For Python workflows:

- Conda environments & Jupyter kernels
- Two curated environments include all popular tools for HEP analysis, such as Uproot, Coffea, Dask, pyROOT.

### **ROOT at Purdue AF**

### Multiple ways to use ROOT:

- ROOT console in terminal
- pyROOT in Conda environments / Jupyter kernels
- ROOT C++ kernel: turn notebook into a ROOT Console



We have implemented **GPU acceleration** of ROOT components (RooFit).

## **Purdue AF: Storage & Data Access**



## **Storage options**

Users are directly connected to Purdue Tier-2 storage volumes; working close to data ⇒ high throughput / low latency

### Storage volumes:

- Purdue EOS storage (13 PB HDD) for large datasets
- Shared project storage (100+ GB per user, SSD)
  - Two solutions with different permissions for non-Purdue users
- Private home directories (25 GB)

### Additionally, remote mounts:

- CVMFS to access CERN software
- CERNBox (CERN's cloud storage) to share work outside of Purdue AF

### **Data Access**

Users are directly connected to Purdue Tier-2 storage volumes; working close to data ⇒ high throughput / low latency

#### Data access methods:

- Remote dataset access from anywhere via XRootD protocol
- XCache server for local dataset cashing
  - dramatically accelerates data access if a dataset is read repeatedly
- Clone ("subscribe") datasets to Purdue storage via Rucio

## **Purdue AF: Scale-Out Options**



## **Scaling Out**

#### Available scale-out resources:

- Slurm at Purdue clusters
  - 10k-40k cores (dedicated + opportunistic);
  - Users compete with CMS production jobs → slow scheduling.
- Kubernetes cluster
  - ~1k cores immediately available;
  - No scheduling mechanism → can't queue jobs.

#### CRAB

- Distribute CMSSW jobs to the Grid (1.4M cores);
- Works for large workloads, but only specific types.

#### CMS-Connect

Submit HTCondor jobs to US CMS Global Pool.

## **Dask Gateway**

- Dask is a flexible Python library for parallel and distributed computing.
- Dask Gateway is a multi-tenant service for managing Dask clusters.
  - Clusters are managed via Gateway server(s), which run outside of user sessions.
  - A choice of backends (Local, Kubernetes, Slurm, PBS, Hadoop).
  - User interface is very similar to other Dask implementations.
  - Gateway server keeps track of user's clusters ⇒ automatic cluster discovery



### **Dask Labextension**

• Dask Labextension is an interactive GUI for managing Dask clusters and displaying monitoring dashboards.

- We have prepared our own version of the extension with more flexibility:
  - Choice of Dask Gateway backend (Slurm or Kubernetes)
  - Specify worker resources interactively



### **Access to GPUs**

#### Main use cases for GPUs at Purdue AF:

- ML training
- ML inference
- Accelerating non-ML frameworks such as RooFit

#### **GPU** access modes:

- Direct access:
  - 6xA100 40GB GPUs; 4 of them MiG-partitioned into 5GB "slices"
- GPU access via Slurm jobs:
  - Wide selection of NVIDIA GPUs Purdue Community Clusters
- **SONIC** inference-as-a-Service implementation
  - WIP for CMS production, can also be used for user analyses in the future.

## **Purdue AF: Monitoring**



## **Monitoring**

- Monitoring is implemented via Prometheus and Grafana services
  - User activity and resource utilization
  - Health of nodes and storage mounts
  - GPU utilization
- We also run **Analysis Grand Challenge** benchmark every 3 hours as a standalone CronJob, and monitor its performance at Purdue AF.





Panels are configured via code developed using Grafonnet library.

## **Purdue AF in Action**

- Papers for which Purdue AF was used (as of summer 2024):
  - 3 published papers [1, 2, 3]
  - 3 approved analyses awaiting journal submission
  - at least 4 ongoing analyses

- Purdue AF is useful outside of Purdue University:
  - Ongoing projects have external collaborators not affiliated with Purdue
  - This summer hosted six tutorials for CMS users by Fermilab (LPC HATS)

• We host regular tutorials locally at Purdue to help our users learn how to conduct analyses faster & more efficiently.

## **Summary**

 Purdue Analysis Facility aims to provide an interactive environment and a complete toolset for physics analyses at CMS experiment.

- Purdue AF is
  - deployed on a Kubernetes cluster at Purdue
  - connected to Purdue CMS Tier-2 storage and Slurm queues.

- Adopted by almost all Purdue CMS researchers
- Has been instrumental in CMS analyses and tutorials