



## **HEPiX Benchmarking Working Group Report**

Matthias J. Schnepf on behalf of the HEPiX Benchmarking WG | 4. November 2024



## The Benchmark Working Group



- active members
  - M. Michelotto, D. Giordano (co-chairs)
  - L. Atzori, C. Hollowell, M. Schnepf, A. Sciaba, E. Simili, R. Sobie, D. Southwick, T. Sullivan, N. Szczepanek, A. Valassi, E. Vamvakopoulos
  - Contributors needed. Feel free to join
- meetings
  - presentations on various topics
    - once per month
    - announced to to the hepix-cpu-benchmark list
  - Sprint meetings
    - 2nd and 4th week each month
    - for developers



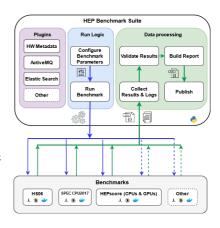
19 Oct HEP Worklands Sprint monting


02 Oct HEP-Workloads Sprint meeting

https://indico.cern.ch/category/1806/






- software development
  - HEP Workloads
  - HEPScore
  - HEP Benchmark suite
- operation
  - maintain the infrastructure used to
    - build workload images using VMs for gitlab runners
    - validate workloads on bare metal nodes
    - collect benchmark data into OpenSearch, HDFS DB and HEPiX benchmark table
    - analysis (more later)
- organize exchanges on CPU/GPU benchmarking topics



### **HEP Benchmarks project**



- HEP Workloads
  - individual reference physics applications
  - also GPU and gravitational-wave applications
- HEPScore
  - uses the workloads of experiments
  - combines them in a single benchmark score
- HEP Benchmark Suite
  - orchestrator of multiple benchmark (HEPScore, HS06, SPEC CPU2017, DB12)
  - report benchmark results to HEPiX BWG



### HEPScore23



- current benchmark for pledged resources (since April 2023)
- 7 workloads from 5 experiments
  - 3 single process (SP) workloads + 4 four thread/process workloads
  - container images based on Linux CC7
- support for x86 and aarch64
- 1:1 normalization with HS06 for the reference CPU model (Intel Xeon Gold 6326 CPU 2.90 GHz (HT=on)
- will provide new versions of workloads based on ALMA 9 images for comparison

|   | VO       | Workload          | SW version            |
|---|----------|-------------------|-----------------------|
|   | ALICE    | DIGI Reco         | O2/nightly-20221215-1 |
|   | ATLAS    | Gen SHERPA (SP)   | Athena 23.0.3         |
|   |          | Reco              | Athena 23.0.3         |
|   | Belle II | Gen Sim Reso (SP) | release-06-00-08      |
| 6 | CMS      | Gen Sim           | CMSSW_12_5_0          |
|   |          | Reco              | CMSSW_12_5_0          |
|   | LHCb     | Sim (SP)          | v3r412                |
|   |          |                   |                       |

5/15

## **Reported Benchmark Results**



- HEP Benchmark Suite can report results to BWG
- about 25 sites contributed Thanks, and please contribute further
- 150 different configuration (CPU models, RAM, SMT conf, ...)
- x86 (AMD, Intel) and ARM (Neoverse-N1, Neoverse-V2)
- data available in a public table



### **Documentation**



- https://w3.hepix.org/benchmarking/how to run HS23.html
- installation description
- dependencies
- GGUS user support (32 of 34 closed)
- instructions for accounting reports



7/15

### **Improvements**



- release candidate of new HEPScore version
  - fix discovered issues
    - ALICE digi-reco, to reduce memory footprint and improve the event configuration
    - ATLAS gen, to better accout of all the processing steps on the MC application
  - new features
    - configurable number of cores to be used by workloads
    - support multiple container registries in the same configuration
    - provision of tarball with container images
- new version of HEP Benchmark Suite
  - release candidate for version 3.0
  - support of plugins to collect system information
    - load
    - power consumption (ipmitool)
    - CPU frequency

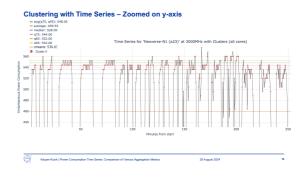


generated with Microsoft copilot

### **Analysis by the Benchmarking WG**



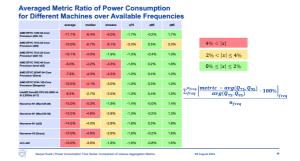
- power metric for HEPScore23
- performance measurements on the Grid
- power efficiency
- architecture specific workload performance




generated with Microsoft copilot

### **Analysis: Power Metric at CERN**

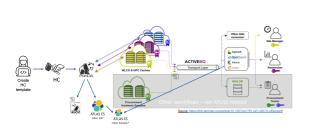



- benchmark suite records time series of power measurement
- single number needed for comparison (power efficiency)
- study of several metrics
- 85% quantil will be used in benchmark group (simple, stable, close to normal opperation)



### **Analysis: Power Metric at CERN**



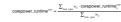

- benchmark suite records time series of power measruement
- single number needed for comparison (power efficiency)
- study of several metrics
- 85% quantil will be used in benchmark group (simple, stable, close to normal opperation)



## **Analysis: Performance Measurements on the Grid at CERN**



- automated benchmarks on the Grid
- compare declaired and runtime corepower




### Runtime Corepower

- Runtime corepower per site:
  - For each CPU model on each site calculate the weight as:



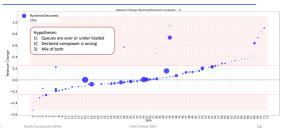
 For each site calculate the weighted average (using available benchmarking CPU Models):

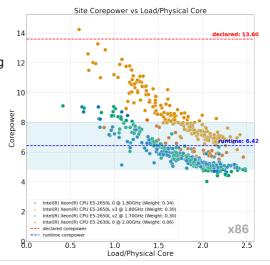


· Relative change:



1/5 2.00 2.15 2.5

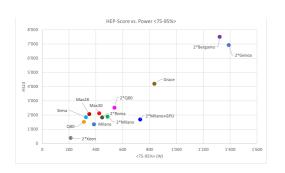

6

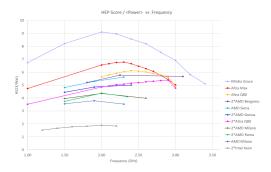

# Karlsruhe Institute of Technology

## **Analysis: Performance Measurements on the Grid at CERN**

- automated benchmarks on the Grid
- compare declaired and runtime corepower
- system load dependent performance
- identify under-/over-performing sites due to wrong declaired corepoer
- CHEP presentation

### Relative change for different ATLAS sites





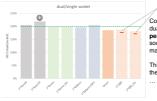



- several systems benchmarked (ARM and x86)
- power efficiency at different CPU frequencies





## **Analysis: Power Efficiency at Glasgow**




- several systems benchmarked (ARM and x86)
- power efficiency at different CPU frequencies
- performance of single vs dual socket configuration
- CHEP presentation



### Single vs Dual Socket

We have compared the performance of dual socket configuration vs. single socket (on the available dual socket machines: Ampere Altra Q80, AMD Epyc Roma & Milano, and Intel Xeon).

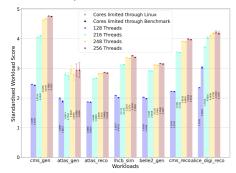


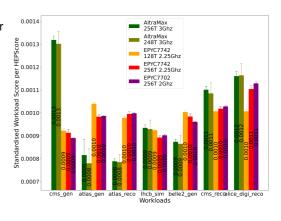
Consistent findings show that ARM machines in dual-socket configurations exhibit over 10% performance degradation compared to two single-socket machines, or even compared to the same machine with only one socket enabled.

Compared to a single socket Q80

This effect is a almost absent on x86 CPUs, where the dual socket configuration is better optimized ... so much that for our Intel machines 1+1 > 2 <sup>(3)</sup>

This is a known issue for both Ampere Altra and Altra Max

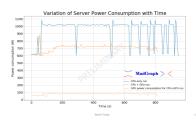

https://www.anandtech.com/show/16315/the-ampere-altra-review/3


https://www.anandtech.com/Show/Index/169792cPage=2&all=False&sort=0&page=3&slug=the-ampere-altramax-review-pushing-it-to-128-cores-per-socket

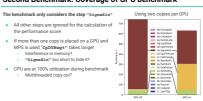
## **Analysis: Power Efficiency by KIT**



- some systems benchmarked (ARM and x86)
- power efficiency at different CPU frequencies
- x86 vs aarch64 performance and thread scan for different workloads
- CHEP poster







### **GPU Benchmarking**



- more and more workloads are available for GPUs
- need to study
  - % of utilization of the GPU vs CPU
  - using of multi GPUs
  - energy consumption of the system and its components
- Workloads available (still evolving)
  - CMS HIT
  - CMS MLPF
  - MadGraph4gpu@NLO
  - further workloads can be added
- no further progress since last HEPiX
- contributions highly welcome



#### Second Benchmark: Coverage of GPU benchmark



### **Summary**



- HEPScore23 successfully in production for more than one year
- improvements and new features will be released soon in HEP Benchmark Suite v3.0 and HEPScore v2.0
- several ongoing analysis
  - performance on Grid
  - sustainability/power efficiency
- GPU benchmarks on the To-Do list
- looking forward to seeing more HEPScore23 benchmarks in the HEPiX database
- looking for contributers



## Backup