

Energy&Carbon Footprint Of CMS WFs

Andrea Piccinelli On behalf of the CMS collaboration

WLCG Environmental Sustainability Workshop - Dec 12th, 2024

The context

Computing and HEP

- → Role of computing technologies more and more crucial for scientific advancements
 - ◆ <u>AI/HPC implementations</u> in particle physics
 - <u>Al implementations</u> in Science/Industry (computer vision, LLMs, GenAl)
 - Numerical simulations
 - …and also at CMS, of course!

More and more energy needed for performing computing activities!

A sustainable effort?

The energy footprint of physics experiment

- → Electricity consumption from data centres and AI expected to double by 2026 (<u>IEA 2024 report</u>)
- → <u>Dennard Scaling</u>: Future generation of processors not expected sustain our needs
 - ◆ Improve resource usage efficiency
- → Increasing awareness of environmental impact of physics experiments

Need for a quantitative measurement!

Measuring the carbon footprint with a CMS scenario

- → Estimating Energy Consumption and Carbon Costs of GENSIM jobs at LHC
 - Preliminary results from
 Francesco Minarini, PhD candidate in Physics
 Supervised by D. Bonacorsi and T. Diotalevi
 (University and INFN Bologna)
 - Academia-industry joint effort on NextGEN EU
- → Goal: Measuring energy consumption and the carbon footprint of a CMSSW GENSIM job
 - ◆ Pheno event generation and Geant4 simulation
 → First step of CMS simulation

Theoretical foundations

The energy consumption

$$E_{A \to X} = T \times (n_c \times P_c \times u_c + n_m \times P_m) \times \text{PUE}$$

- \rightarrow T = Elapsed computing time (h)
- → $n_c =$ number of used cores
- \rightarrow P_c = power draw normalized to computing cores (kW)
- → $u_c = CPU$ usage factor in [0 (low usage), 1 (high usage)] interval
- → n_m = allocated RAM memory (GB)
- → P_m = power draw of RAM (kW)
- → PUE = Power Usage Efficiency

Research Article 👌 Open Access 💿 🕢

Green Algorithms: Quantifying the Carbon Footprint of Computation

Loïc Lannelongue 🔀 Jason Grealey, Michael Inouye 🔀

First published: 02 May 2021 | https://doi.org/10.1002/advs.202100707 | Citations: 67

Theoretical foundations

From energy consumption to carbon footprint

$$F = E_{(A o X)} imes CI$$

CI = Country-wise Carbon Intensity coefficient of electricity production [gCO2/kWh]

CI strictly depends on how energy is produced and exchanged on the energy market \rightarrow Susceptible to geopolitical situation of where the data center is located warning

Measuring the energy consumption

 $E_{A \to X} = T \times (n_c \times P_c \times u_c + n_m \times P_m) \times \text{PUE}$

gathered in an external Config.toml file

IVERSITYOF

Experimental Setup

- → Computing machines
 - ◆ Two "Slurm-managed" Intel nodes offered by INFN-CNAF's student-oriented facility Node 1 → CPU: 2x E5-2640v2 (16 physical cores), RAM: 128 GB, HT: ON
 Node 2 → CPU: 2x E5-2683v3 (28 physical cores), RAM: 128 GB, HT: ON

Monitoring target

- → CMS containerised HEP Benchmark (<u>open-access</u>)
 - CMS GENSIM multithreaded job
 SW framework: CMSSW v12_5_0
 - Top-antitop pair events events at 14 TeV with Run3 condition

PoC: Monitoring workflow

PoC: Monitoring workflow

Results

Data are the geometric means of 3 separate measurements on the same node.

TNEN-	-CNAP ED	-204072	noae
CPUs	Evts per core	kWh	elap.T
30	333	3.058	5.13
28	357	3.026	5.44
24	416	3.017	6.36
20	500	2.940	7.44
16	625	2.921	9.22
12	833	2.887	12.16
8	1250	2.818	17.80

TNEN CNAR RE 2640-2 mode

INFN-CNAF E5-2683v3 node

CPUs	Evts per core	kWh	elap.T
54	185	1.51	1.87
50	200	1.49	2.01
42	238	1.48	2.39
30	333	1.47	3.32
28	357	1.46	3.53
16	625	1.41	5.96
8	1250	1.17	11.11

Results

Results

UNIVERSITY OF NOTRE DAME

WP validation

1 GENSIM workload

run over 30 cores

→ 2 GENSIM workloads

run over 14 cores each

Number of events per core tailored

to obtain the same final event size

Experiment

 \rightarrow

INFN-CNAF E5-2640v2 node

Same event size with less energy expense! (at the price of running for longer)

Conclusions

- ➔ Milestones
 - The developed tool can measure the energy consumption of an arbitrary computing task
 - Possible margins for performance improvements energy-wise
 - Optimizing the job submission seems a promising task in this perspective
- → Future outlook
 - More detailed estimation of errors and biases
 - Structuring the PoC for footprint data collection into a database
 - Automatic checkout pipeline of footprint (e.g., power data analyses).

NIVERSITY OF OTRF DAMF

