

Sustainability Efforts at the KIT Scientific Computing Center

Andreas Petzold

www.kit.edu

KIT Scientific Computing Center

Provides basic IT services

Operates large scale IT infrastructures for science

- GridKa WLCG Tier-1
- HoreKa HPC (HoreKa-Teal #9 on Green500)
- Large Scale Data Facility

Distributed over 3 sites, 4 data centers

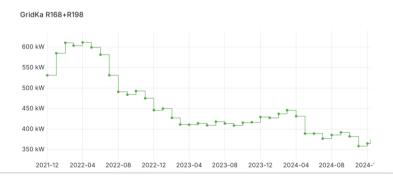
Multi Pronged Approach

Observability

All systems must report power consumption

Optimize usage of compute resources

- Energy efficient compute
- Dynamic usage of (non-local) resources
- Data center design
 - Focus on heat reuse


Generate green power locally

Optimized High Throughput Computing Infrastructure 280 worker podes incl. 15 APM bests

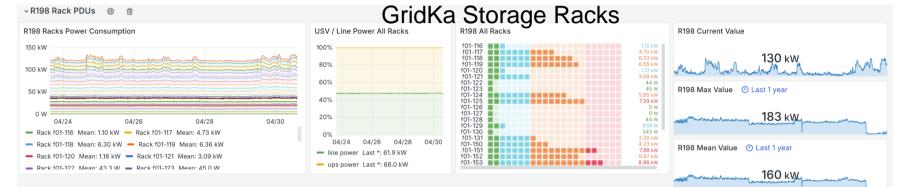
GridKa WLCG Tier-1

- 280 worker nodes incl. 15 ARM hosts
- 91PB disk space, 100 servers
- Administrative nodes, network infrastructure

Power consumption steadily decreasing while pledged resources were increasing

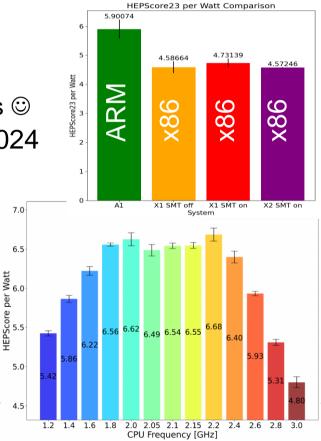
Observability

- There is never enough monitoring
- Power data recorded by SCC
 - Individual Servers: BMCs
 - PDUs: rack level data, UPS + line power
 - Bus bars: rack rows and rooms
 - Building infrastructure (depends on data center)
- Power data recorded by KIT facility management
 - Building infrastructure

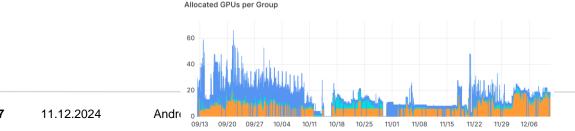


Scientific Computing Center

Observability

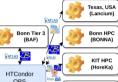


Scientific Computing Center


Energy Efficient Compute Resources

TCO including power consumption

- part of call for tenders since many years
- \blacksquare Yes, we do measurements to check vendor claims $\textcircled{\sc {\odot}}$
- ARM compute nodes in production since mid 2024
 - 15 nodes with 3840 cores
 - Intensive benchmarking; 20% better HS/W
- 56 GPUs available on the grid via GridKa
 - Still mainly used for local development for CMS and Belle II, but also ATLAS pilots



Opportunistic/Dynamic Resources

- Demonstrated production scale operation during scale test together with HoreKa
- Central building block of the Compute infrastructure in PUNCH4NFDI (DFG) and FIDIUM (BMBF)
- (Non-local) compute resources running on renewable energy
 - Opportunistic resources used when "sun is shining/wind is blowing"
 - Potential use for grid stabilization
 - PoC 2023 with Lancium (US)
 - 100% wind and solar

LMU Munich

OpenStack

(TOpAS)

Munich

C2PAP

HTCondor-CE cloud-htcondor-ce-1-ki

HTCondor-CE loud-htcondor-ce-2-ki

entry point

Carlsruhe Institute of Technolog

Scientific Computing Center

Data Centers

- Most modern building for HPC
 - 2.4MW capacity
 - Warm water cooling for compute; 500kW air cooling
 - PUE < 1.1; free cooling <10% heat reuse during winter</p>
- Old GridKa data center
 - 1MW capacity
 - Cold water cooling
 - PUE ~1.3 with compression cooling
 - PUE <<1.3 with cooling provided by local powerplant</p>
- Local combined power/heat/cooling plant (BHKW)
 - Produces cold water from own waste heat

New "Neighborhood" Computing Center

- New 10+MW data center
 - Integrated planning with KIT facility management
 - Focus on heat reuse
 - Located in "neighborhood" on campus close to heat consumers
- Elasticity of usable resources foreseen from the start
 - Availability of green power
 - Stabilization of local power grid

Engineering firm contracted for concepts very recently

Local Power Generation

Solar panels installed on GridKa data center and office buildings
500kWp → GridKa (today) could be powered 100% by solar on a sunny day

Scientific Computing Center