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A brief history of scientific computing at 
BNL
• The Physics Dept. created the RHIC Computing Facility (RCF) 

(circa 1997) to support its nascent experimental program.

• In the subsequent years, it was tasked with supporting the 
USATLAS Tier-1 computing (~2004) needs, other physics 
programs and experiments (neutrino, astrophysics) in ~2006, 
other BNL departments and programs (CFN, NSLS-II, Nuclear 
Science, CSI, etc)  in ~2016 and Belle-II in 2018.

• The RACF was renamed the Scientific Data & Computing 
Center (SDCC) in ~2016.

• The SDCC outgrew its old data ~14,000 ft2 center and migrated 
into a new and larger (~40,000 ft2) data center. The SDCC is 
the sole source of scientific computing services at BNL.

2



Scientific Data and Computing Center Overview

● Tier-0 computing center for the current RHIC experiments

○ sPHENIX and STAR

○ Support for earlier experiments (BRAHMS, PHENIX, PHOBOS) 

● US Tier-1 Computing facility for the ATLAS experiment at the LHC

○ Also one of the three ATLAS shared analysis (Tier-3) facilities in the US

● Tier -1 and RAW Data Center for Belle II at KEK

● Providing computing and storage for proto-DUNE/DUNE together w/ FNAL 

serving data to all DUNE OSG sites

● Providing computing resources for smaler programs in NP and HEP

● Computing support for NSLS-II, CSI, CFN and other programs

● Serving ~2,000 users from >20 projects with ~40 staff

● Active R&D on future IT technologies

● Active contributor to workshops (HEPIX, HTCondor, etc) and conferences 

(CHEP, ACAT, etc) with scientific computing tracks

● Contributing resources to OSG at BNL

● Computing support for Electron-Ion Collider (EIC) activities
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Science DMZ
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SDCC current activities
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Current Priorities

• Support for sPHENIX computing model
• Two, concurrent DAQ streams to tape (archival storage) and disk cache (for 

prompt processing)
• Good experience for EIC streaming DAQ models

• Continued support for existing HEP experimental programs
• ATLAS run3 at CERN  (and run4 and beyond in the HL-LHC era)
• Belle-II at KEK

• Continued support for RHIC data processing and analysis beyond 2025
• Plan for constant effort over ~5 years after data taking ends
• RHIC data, knowledge and workforce preservation

•Support for EIC
• Kick-start activities with Program Development funds
• Evolution of SDCC services
• Prototyping of new computing architectures

• non-x86 platforms
• GPU’s

• Coordinated effort with JLAB on EIC computing being developed
• Formation of EIC Computing and Software Joint Institute (ECSJI)
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Large datasets stored in HPSS
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•SDCC just crossed 300 PB stored in HPSS tape system

•Largest in Nuclear and Particle Physics (in U.S.)

•3rd largest in U.S. after NERSC (355 PB) and NOAA (350 PB)

2018
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Large Computing Deployments for 
RHIC

Major purchases since 2022:

•CPU

• 22 Racks, 616 servers - 

Purchase in progress

• 5 Racks, 158 servers - 

Q1 FY24

• 16 Racks, 495 servers - 

Q4 FY22

• 5 Racks, 150 servers - 

Q1 FY22

• SDCC projected to archive 

~50 PB for sPHENIX in 2024 

run

• Estimate to archive another 

~500 PB for sPHENIX in 2025 

run
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Impact of EIC Computing 
Activities

Plans for DAQ/Electronics 

Integration/Testing/Installatio

n and 

needs for Off-Project Support 

D.Abbot, J.Landgraf, 

F.Barbosa
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SDCC trends and evolution
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Facility Growth (computing cores)
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Facility Growth
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HS23 per computing core
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Power efficiency of cpu’s
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Growth of electrical power usage
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Some observations

• Continued growth of facility resources for existing and 
future programs led to the construction of a new data 
center (~3x larger than old one) in 2021
• Resource growth rate may exceed data center capacity

• Continued usage of older resources beyond nominal 
retirement age (~5 years)
• Needed to meet demand, but not ideal for carbon emissions

• Are improvements in HS23/Watt and HS23/core ratios 
sufficient to keep up with growth in demand?

• On-going evaluation of alternative cpu architectures
• Arm

• Nvidia Grace
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The New Data Center
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State-of-the-Art Scientific Data and 
Computing Center (SDCC)

• 59,000 sq-ft2 Data Center 

• Opened for operations in September 2021

• Running community services for more than 20 projects and 
experiments:

• RHIC (STAR and sPHENIX), ATLAS, Belle II, NSLS-II, DUNE, EIC, 
CFN, LQCD, IBM-Q Hub

Energy-

efficient 

Cooling 

System



Floor Plan: Main Data Hall

Additional 1.2MW 

deployment in 

progress



Data Center Key Features

• Modular, Scalable and Robust design– 9.6MW of ultimate IT payload 
capacity 

• Currently, 3.6MW (UPS/Generator) backed up power available

• Additional 1.2MW power block to be available by end CY-25

• Cooling with high efficiency chillers and Rear Door Heat Exchangers 

• Liquid (Direct to Chip/Immersion) cooling ready for latest GPU based 
IT hardware deployment for AI, HPC and Digital Twin applications

• Energy efficient data center with 1.3 current PUE, aimed for 1.2 with 
full IT payload deployment 

• Streamlined operations through Data Center Infrastructure 
Management (DCIM) including node level electric billing, asset 
management, environmental monitoring and capacity planning



Sustainability Activities
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Case Study: Empirical Measurements of AI Training Carbon 
Footprint on a GPU-Accelerated Node

• Background and Motivation: Increased AI/HPC (High-Performance Computing) workload 

demand is driving up scope 3 carbon emissions at main data hall. Quantifying the energy 

footprint of computational infrastructure requires models parameterized by the power 

demand of AI hardware during training. 

• Empirical measurement of the instantaneous power draw of an 8-GPU NVIDIA H100 HGX 

node obtained during the training of open-source image classifier (ResNet),  large-

language models (Llama2-13b) and GPU Burn stress test

• Case Study Goal: Benchmark carbon footprint of AI/HPC workloads on Supermicro HGX nodes with 

Nvidia’s H-100 8 GPUs 

• Optimize ‘Stranded Power’ in the SDCC data center by understanding the energy footprint of the AI 

training workloads for power optimization for additional ATLAS payload deployment

• Reduce the embodied carbon - Scope 3

• Current Findings: (All Air-cooled)

• Air-cooled systems struggle to reach maximum TDP – under utilized in power

• Smaller batches require more time, decreasing efficiency 

• Larger batches require less time increasing significant efficiency at full GPU utilization

• Proposed Solution: Convert from air-cooled to liquid-cooled by:

• 20-30% power savings – Scope 1

• Reduced CapEx, OpEx and TCO



Hardware Information

• Supermicro HGX 8U air cooled node with (8) H100 GPU’s

• CPU :  AMD EPYC 9354 32-Core Processor with 1.5 TB memory 

• GPU: NVIDIA H100 with 80 GB memory 

• Rated (node) TDP 10.2kW

Power and Cooling

• Standard 19" wide, 42U rack deployment

• Cooling provided by Rear-Door Heat Exchangers (RDHx)

• The RDHx is supplied with 15.5 °C facility chilled water

• 23.8 °C ambient cooling temperature maintained

• Power to the HGX node is provided via rack mounted power

• distribution units (PDU’s) using six standard C13 outlets

• Power monitoring available via DCIM system by NLYTE

• Provisioned Power is 14kW per High-Performance (HPC) node.

HGX Node





Current AI/HPC H100 Nodes

• 27% excess power is available from the 
provisioned power assuming the rated TDP

• Actual power does not exceed 8.5 
kW, allowing a 39% excess power

Node Availability per Power Metric

• 63 nodes using provisioned power

• 87 nodes using rated power

• 105 using actual power

• 67% increase in additional node (42) deployment on 
the basis of actual power consumption

• 38% increase in additional node (24) deployment on 
the basis of rated (TDP) consumption

Figure 3: Power draw of currently deployed AI/HPC nodes

Figure 4: Number of nodes for each row by each power metric



Potential Number of Nodes with Air-Cooled Machines

• 20%-25% more power efficient

• 33% increase in number of nodes from Air-Cooled to Liquid-Cooled

• Increased in performance with the same power draw

Figure 5: Node Availability in Air-Cooled V.S. Power-Cooled system



What is CodeCarbon? + Data Collection Process 

CodeCarbon:

• Open-source python package used to track and estimate CO₂ emissions from 

computational workloads.

• Monitors hardware usage (CPU, GPU, RAM) and energy consumption

• The AI workloads were distributed over all 8 GPUs this time to take less time per 

batch run using distributed data parallel (DDP).

Region: New York (NY):

• CodeCarbon uses data from local electricity grids to estimate emissions.

• NY primarily uses an energy mix consisting of:

• Natural Gas, Nuclear, Hydropower, and Other Renewables.

• Regional carbon intensity (approx.): ~0.464 kgCO₂/kWh

• Carbon emissions formula: 

• Power consumed (kW) x time (hrs) x 0.464 kgCO₂/kWh

Integration with Weights & Biases (W&B):

• A tool for tracking machine learning experiments, enabling visualization, 

collaboration, and optimization in real-time.

• Logs carbon emissions data alongside model performance metrics.

• Enables seamless visualization of environmental impact in W&B dashboards.

• Allows for data-driven approaches for debugging actively running models in real-

time.



Table 2. Carbon Emissions were sampled at 1 second intervals over the time. Batch size is measured in 

images.

Figure 6: The figure demonstrates that as 

batch size increases, carbon emissions 

decrease. Larger batches consume more 

power but complete the same task in 

significantly less time, leading to lower overall 

emissions.

Figure 7. The instantaneous power draw for each run 

over time (in seconds) is shown in the figure. Larger 

batch sizes, while requiring more power, complete the 

tasks in less time. This reduction in runtime results in 

lower overall carbon emissions, despite the higher 

power consumption per run.



• The maximum observed power draw during a GPU Burn stress was 
approximately 8.4 kW, 18% lower than the manufacturer-rated 10.2 kW at 
100% GPU utilization

• Holding model architecture constant, increasing batch size from 512 to 4096 
images for ResNet used 1kW higher power on average but reduced total 
training energy consumption by a factor of 4

• Llama training GPU load was 93% on average, with a median power draw of 
7.9 kW, indicating, also well below the rated maximum

• The minimal difference in power consumption between the GPU stress test 
and the real-world Llama training workload demonstrates that our empirical 
measurements offer a reliable characterization of the power requirements for 
computationally demanding workloads on this hardware

• The rack-level power distribution at the SDCC supplies 70 kW (14kwx5) of 
power to the racks which contain (5)  Nvidia HGX nodes

• Use existing ‘stranded’ power capacity in low-utilized areas within the data 
center instead of adding new infrastructure for expansion of ATLAS 
computing deployment at BNL.

Results and Conclusion



• Hardware Consolidation may reduce CapEx, OpEx, and overall TCO of the 
data center. Also reduces Embodied Carbon (Scope 3) by reusing server 
chassis during server refresh by reusing physical infrastructure instead of 
purchasing entirely new equipment.

• Current data only shows air-cooled nodes. Ongoing research is focused on 
understanding the energy gain and further carbon footprint reduction by 
running similar benchmarks on a liquid-cooled HPC node.

• Through the application of a DTC cooling system, a potential power savings 
of 20-25% can be used for scalability by introducing more space for high 
density HPC racks, as it reduces the power draw for fans. 

• Smaller batch sizes require more iterations per epoch, leading to extended 
runtime and higher carbon emissions, whereas larger batch sizes, despite 
higher power consumption per step, complete tasks more efficiently and 
result in reduced overall emissions.

Results and Conclusion



Future Research

• Capacity Planning and Energy Estimation: These findings can guide SDCC 

data center capacity planning, precise energy estimation and allow the use of 

existing power to expand ATLAS computing infrastructure at BNL.

• Liquid cooling Direct-to-Chip (DTC)/Immersion Cooling Impact: Efficient 

cooling technologies, like DTC liquid cooling, could maintain high 

computational utilization while significantly lowering node-level energy 

consumption, potentially by 30-40%.

• Heat Reuse Potential (Circular Economy): Energy absorbed from the chilled 

water system that uses liquid cooling can be effectively reused for heating 

applications such, space heating, water desalination, fish farming, etc. 

• Component-Level Power Visibility and Optimization: Detailed sub-metering 

of individual components within nodes could reveal the sensitivity of power 

draw across workloads, allowing for optimized hardware configurations.

• Future Research on Cooling and Scheduling: Further studies will 

investigate how advanced cooling technologies and carbon-aware scheduling 

can impact the energy consumption of AI workloads.



References

A. de Vries, “The growing energy footprint of artificial intelligence,”

Joule, Oct. 2023. [Online]. 

https://www.sciencedirect.com/science/article/pii/S2542435123003653

A. S. Luccioni, S. Viguier, and A.-L. Ligozat, “Estimating the Carbon

Footprint of BLOOM, a 176B Parameter Language Model,” Journal of

Machine Learning Research, vol. 24, no. 253, pp. 1–15, 2023. [Online]. 

http://jmlr.org/papers/v24/23-0069.html

Mohammad Azarifar a, et al. “Liquid Cooling of Data Centers: A Necessity 

Facing Challenges.” Applied Thermal Engineering, Pergamon, 5 Apr. 2024, 

www.sciencedirect.com/science/article/abs/pii/S1359431124007804  

Wilicc. “WILICC/GPU-Burn: Multi-GPU Cuda Stress Test.” GitHub, 

https://github.com/wilicc/gpu-burn

 

https://www.sciencedirect.com/science/article/pii/S2542435123003653
http://jmlr.org/papers/v24/23-0069.html
http://www.sciencedirect.com/science/article/abs/pii/S1359431124007804
https://github.com/wilicc/gpu-burn

	Slide 1: Advancing a more energy-efficient and sustainable SDCC at BNL
	Slide 2: A brief history of scientific computing at BNL
	Slide 3: Scientific Data and Computing Center Overview
	Slide 4
	Slide 5: SDCC current activities
	Slide 6: Current Priorities
	Slide 7: Large datasets stored in HPSS
	Slide 8: Large Computing Deployments for RHIC
	Slide 9: Impact of EIC Computing Activities
	Slide 10: SDCC trends and evolution
	Slide 11: Facility Growth (computing cores)
	Slide 12: Facility Growth
	Slide 13: HS23 per computing core
	Slide 14: Power efficiency of cpu’s
	Slide 15: Growth of electrical power usage
	Slide 16: Some observations
	Slide 17: The New Data Center
	Slide 18: State-of-the-Art Scientific Data and Computing Center (SDCC) 
	Slide 19: Floor Plan: Main Data Hall
	Slide 20: Data Center Key Features 
	Slide 21: Sustainability Activities
	Slide 22: Case Study: Empirical Measurements of AI Training Carbon Footprint on a GPU-Accelerated Node 
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: What is CodeCarbon? + Data Collection Process  
	Slide 28
	Slide 29: Results and Conclusion
	Slide 30: Results and Conclusion
	Slide 31: Future Research
	Slide 32

