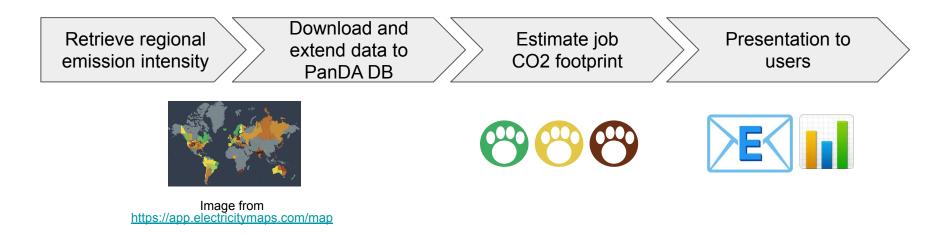
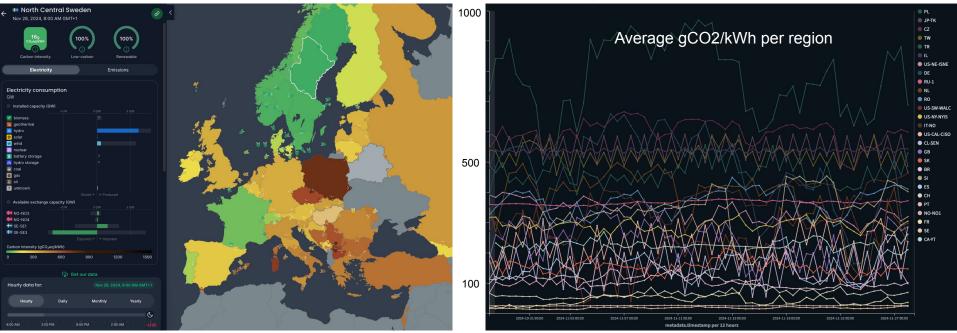

Conscious Computing in ATLAS: Estimating Carbon Footprint for PanDA Workloads

Fernando Barreiro Megino

on behalf of the PanDA team

WLCG Env Sustainability Workshop, 12 December 2024





Estimating job CO2 footprints through PanDA

- Overarching goal of estimating the CO2 footprint of the ATLAS experiment
 - See <u>Ben Bruers' ATLAS Week presentation</u>
- Feb 2023 Ben and Rod asked to add estimation for compute in PanDA

Emission intensity of regional power grids

https://app.electricitymaps.com/map/24h (API: CO2 signal)

CERN OpenSearch index

- Data is available for many countries, particularly in Europe and the US
 - A few countries hosting ATLAS sites are missing
- In some cases data is published at regional level
- Emission intensities vary by region and fluctuate over time

Emission intensities in the PanDA database

- Copy the **regional** emission intensity from the OpenSearch index
- Calculate global intensity as weighted average based on HS23 contributions

Regional	l intensities gCO	2/kWh	Weights	(dynamically calculated)		
REGION	1 TIMESTAMP	VALUE	🕀 REGION	& ROUND(SUM(JSS.HS)/TMP_TOTAL.TOTAL_HS,3)		
R	29-NOV-24 09:30:03	95	BR	0.004		
A-YT	29-NOV-24 09:30:04	216	CA-YT	0.047		
H	29-NOV-24 09:30:05	61	СН	0.103		
L-SEN	29-NOV-24 09:30:07	195	CN	0.002		
Z	29-NOV-24 09:30:09	608	CZ	0.015		
E	29-NOV-24 09:30:10	531	DE	0.127		
S	29-NOV-24 09:30:11	181	ES	0.051		
R	29-NOV-24 09:30:12	49	FR	0.067		
iB	29-NOV-24 09:30:14	187	GB	0.093		
Ľ	29-NOV-24 09:30:15	480	IL	0.008	Global intensities	gCO2/kWh
T-N0	29-NOV-24 09:30:16	457	IT-NO	0.032		
P-TK	29-NOV-24 09:30:17	589	JP-TK	0.027	A REGION A TIMESTAMP	🕆 VALUE
IL	29-NOV-24 09:30:18	449	NL	0.017	GRID 29-NOV-24	
10-N01	29-NOV-24 09:30:19	25	N0-N01	0.005	GRID 29-N0V-24	09.30.33 313
۲L	29-NOV-24 09:30:21	796	PL	0.006		
т	29-NOV-24 09:30:22	115	PT	0.002		
0	29-NOV-24 09:30:23	352	RO	0.006		
U-1	29-NOV-24 09:30:24	369	RU-1	0.004		
E	29-NOV-24 09:30:26	23	SE	0.022		
I	29-NOV-24 09:30:27	442	SI	0.17		
K	29-NOV-24 09:30:28	154	SK	0.003		
R	29-NOV-24 09:30:29	456	TR	0.003		
W	29-NOV-24 09:30:30	497	TW	0.001		
	50 29-NOV-24 09:30:31	338	US-CAL-CIS	0.003		
	29-NOV-24 09:30:33	293	US-NE-ISNE	0.012		
	5 29-NOV-24 09:30:34	271	US-NY-NYIS	0.045		_
IS-SW-WALC	29-NOV-24 09:30:35	356	US-SW-WALC	0.125		5

Estimate gCO2 per job

 $n_cores \times core_power_consumption \times$

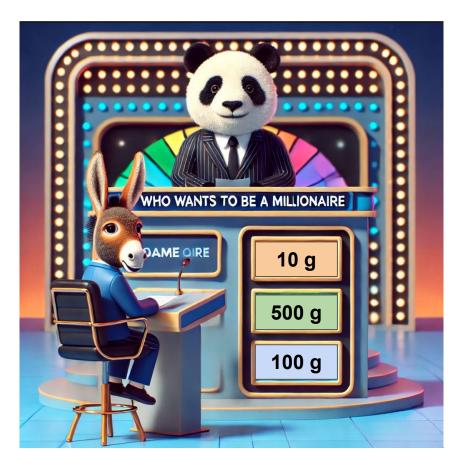
How power hungry the CC/HW is (default of 10W)

 $emission_intensity(t)dt$

J starttime

Carbon intensity of the power source over the duration of the job

gCO2/kWh


СН	16-FEB-23 10:30:	33 93
СН	16-FEB-23 11:31:	11 96
СН	16-FEB-23 12:31:	01 86

E.g. a 8 core job running at CERN from 11:00 to 12:30 would emit roughly 8 * 0.5h * 10W * 93 gCO2/kWh + 8 * 1h * 10W * 96 gCO2/kWh = 11.4 gCO2

- The model is a first approximation for awareness
 - We are not pretending to provide precise results
- Sites can adjust their region and core power consumption in CRIC

Job emission examples

What are the approximate CO2 emissions for a 8-core, 24h job considering average emission intensity?

Examples for heavy and light jobs

The CO2 estimations are stored in the database for each job entry and displayed in BigPanDA monitoring job pages

Heavy jobs: multi-core, long duration

CORECOUNT	A DURATION	HOURE	GCO2_REGIONAL	A CCOD CLOBAL
x	- X		1	X
8		5.02		1284.68
8	3	6.59	1073.84	851.93
8		35.8	1044.47	831.03
8	3	2.45	1042.72	755.94
8	3	5.52	1036.26	823.99
8	3	5.42	1034.78	822.07
8		59.3	973.01	1399.04
8		46.4	953.24	1073.75
8	4	5.53	939.75	1051.45
56		1.89	651.02	325.19
56		1.91	641.36	329.94
56		1.9	637.99	329.42
56		1.9	636.72	328.73
56		1.9	636.46	328.58
56		1.9	635.85	330.16

Light jobs: single-core, short duration

CORECOUNT	DURATION SECONDS	GCO2_REGIONAL	GCO2_GLOBAL
1	52	0.01	0.05
1	89	0.01	0.08
1	83	0.01	0.07
1	45	0.01	0.04
1	89	0.01	0.08
1	80	0.01	0.07
1	76	0.01	0.07
1	26	0.01	0.02
1	39	0.01	0.03
1	80	0.01	0.07
1	94	0.01	0.08
1	44	0.01	0.04
1	91	0.01	0.08
1	84	0.01	0.07
1	29	0.01	0.03

Presentation of results and raising awareness

- Importance of the way the data is presented
- Users are presented with aggregates of **global** emissions (not regional)
 - Users typically don't select the region
 - Assigning jobs to a low-intensity region merely shifts other workloads to high-intensity regions
- The regional and global CO2 values are in the PanDA jobs table
 - This table is replicated to a few ElasticSearch/OpenSearch indexes
 - It is possible to make aggregated dashboards with CO2 emissions by activity, user, site
- Data is presented as approved by the ATLAS SW&C administration
 - I will only show examples that have been formally approved

Increase awareness: task aggregation

Build

Run

Merge

Task completion notification

42113766 task HS23s N input CO2 0 Expected Time stamps: Priority: files N input events total Task ID Type Processing type User Nucleus Status Total created Cores original Attempt finished used done last modified done current failed failed failed 110,322 3.4G 2024-11-18 panda-14.339.794.846 134kg Arbitrary (99%) 2.2G 12:28:00 1001 42113766 analy client-1.5.79-jedifinished (99.6%) 101kg 1 109,792 1.6G 2024-11-26 1001 user 14,281,448,629 33kg run (0%) 530 553.6M 18:07:05 Task parameters and help -Memory & walltime usage -Task extra info Show jobs Other plots States of jobs in this task [drop mode] pending defined waiting assigned throttled activated sent starting running holding transferring merging finished failed cancelled closed

Summary of TaskID: 42116242

Created 20	
Created	2024-11-18 18:12:14
Ended 20	2024-11-18 18:18:14.673831
Final Status de	lone

Total Number of Inputs

Category	Count
Succeeded	3
Failed	0
Cancelled	0
Total	3

. . .

Estimated Carbon Footprint for the Task

Category	gCO2	
Succeeded	0.14 gCO2	
Failed	0 gCO2	
Cancelled	0 gCO2	
Total	0.14 gCO2	

More details on estimation: https://panda-wms.readthedocs.io/en/latest/advanced/carbon_footprint.htm

Panda Problem Reporting

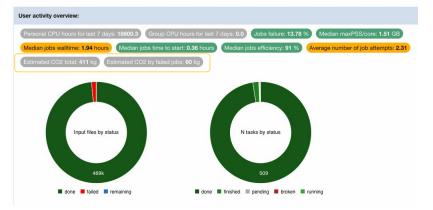
· The eGroup for help request: hn-atlas-dist-analysis-help@cern.ch

The Discourse forum for distributed computing help: https://atlas-talk.web.cern.ch/c/distributed-computing-help

The JIRA portal for software bug: <u>https://its.cern.ch/jira/browse/ATLASPANDA</u>

10

76


957

12808 460

29

Task monitoring

Increase awareness: user and activity aggregation

"My BigPanDA"

Running production tasks

Conclusions

- Job footprint estimations available since Feb 2023
- They represent a rough, central estimation
- Handles available for sites to indicate more accurate core power consumption and region in CRIC
- The intent is to raise user awareness of computing emissions and encourage positive behaviour
 - Data added on request and as approved to monitoring
- PanDA does not carry out decisions based on CO2 emissions (e.g. broker to green regions)
 - Such decisions belong to the management

Credits

- Idea and monit collector: Ben Bruers and Rod Walker
- Implementation in PanDA: Fernando Barreiro Megino
- Monitoring and accounting: Aleksandr Alekseev, Misha Borodin, Tatiana Korchuganova