
FlashSim at CMS:
performance and resources of deep learning based
simulation for HEP

Francesco Vaselli
Scuola Normale Superiore & INFN Pisa 1

WLCG Environmental
Sustainability Workshop

Conventional CMS Simulation

FullSim

● Generation: production of particles using theoretical
calculations (e.g. MadGraph)

● Detector simulation: propagation through each element
of the detector (GEANT4)

● Digitization of the energy deposits and reconstruction
algorithms

● Data processing to build different data formats

~50% of available CPUs used for these steps (CMS)

2
From 2402.13684

https://www.google.com/url?q=https://arxiv.org/abs/2402.13684&sa=D&source=editors&ust=1734007234781864&usg=AOvVaw0m7KEAX4JHMAc5TY9HV15d

CMS FlashSim

3

FlashSim ― Universal ML-based end-to-end simulation
framework

● targeting directly analysis-ready high-level
variables (NANOAOD)

● using state-of-the-art generative models
● simulation speed ~100 Hz (x100/x1000 faster

than FullSim)
● analysis and sample independent

Conditioned detector response

The goal is to learn a universal detector response; we must consider all the information correlated to the
reconstruction

4

Generator-level Electron Reconstructed Electron (NANOAOD)

P(x | conditioning)

Electron pT,η,φ, … Gen-level Electron pT,η,φ, …

Output pdf

Multiple objects simulation

Physics objects Sources (one NN model for each source)
Number of simulated
attributes per object

Jets Generator Jet Fake from PU 39

Muons Generator Muons Fake from Jets/PU Duplicates 53

Electrons Generator Electrons
Generator Photons

(prompt) Fake from Jets/PU 48

Photons Generator Photons (prompt) Generator Electrons Fake from Jets/PU 22

MET GenMET and HT 25

FatJets Generator AK8 Jets 53

SubJets Generator AK8 SubJets 13

Tau Reconstructed Jets with a Tau RecoJets without a Tau 27

Secondary Vertices Jets with Heavy Flavour Light Jets Taus 16

Non MET scalars (e.g. PV) Various event level inputs 16

FSRPhotons GenMuon/RecoMuon 6

5

Single model for each object

● trained on existing FullSim dataset
● smaller models (~2M parameters)
● more control on the physical information used as

conditioning

We must consider all possible sources

● because of errors and pileup, fake objects are
reconstructed

● e.g. electrons originated from energy deposits of
particle jets

The final structure combines two modules

A reconstructed object may originate from
multiple sources

● genuine signal
● particles with similar signature
● detector interactions and decays
● fakes, duplicates, pileup

Each object is handled by FlashSim with the
various models

An efficiency model for each source

A properties/simulation model for each source

Reconstructed
Muons

Generator
level prompt

Muons

Hadron
decays in jets

mu1

mu2

mu3

genmu1

genmu2

genmu3

jet1
jet2
jet3
jet4
jet5 6

We can get new samples from a complex
multi-dimensional distribution starting from
Gaussian noise

Achieved by applying an invertible
transformation to the Gaussian samples

We learn the inverse transformation during
the training process

Normalizing Flows as backbone

7

training

sampling

https://arxiv.org/abs/1912.02762

https://www.google.com/url?q=https://arxiv.org/abs/1912.02762&sa=D&source=editors&ust=1734007235645388&usg=AOvVaw2Td_PGuaKpnzL3HiqSOL3t

Continuous Flows (and Flow Matching)

Continuous transformation (t∈[0, 1])

Thanks to Flow Matching, we can learn the vector field

8

https://arxiv.org/abs/2210.02747 and
https://arxiv.org/abs/2302.00482

From https://github.com/atong01/conditional-flow-matching

https://www.google.com/url?q=https://arxiv.org/abs/2210.02747&sa=D&source=editors&ust=1734007235693836&usg=AOvVaw3fjrjXrVHgnzBTdij1QigM
https://www.google.com/url?q=https://arxiv.org/abs/2302.00482&sa=D&source=editors&ust=1734007235693928&usg=AOvVaw3fHMyffFkoZ_ObQU4hj2i2
https://www.google.com/url?q=https://github.com/atong01/conditional-flow-matching&sa=D&source=editors&ust=1734007235724235&usg=AOvVaw2Xv9yG65ykAeFfYSru5MSz

Good 1d performance on different plots

9

Analysis level performance
Once full NANOAOD event are available we can
compare derived quantities and implement
some analyses

Two toy analysis corresponding to VBF Higgs to
muons search and ZH→ llbb have been tested
comparing flashsim with fullsim

Analyses tested all the way down to the final
DNN output, comparing different samples,
some never seen during training

Selection

Muons pT > 20 GeV, |η| < 2.4,
 Iso < 0.25, MediumID

Jets pT > 25 GeV, |η| < 4.7,
 puId > 0, jetId > 0

Signal
Region

115 < m(ll) < 135, pT
j1 > 35,

 pT
j2 > 25, m(jj) > 150, |Δη(jj)| > 2

Selection

Muons
pT > 20 GeV, |η| < 2.4, Iso < 0.25,

MediumID

Jets pT > 20 GeV, |η| < 2.5, puId > 0, jetId > 0

Medium
b-tag

DeepFlavour btag > 0.27

Signal
Region

75 ≤ m(Z) < 105, 90 < m(jj) < 150,
Medium b-tag (lead. jet)

VBF H→ 𝝁𝝁 ZH→ llbb

VBF H→ 𝝁𝝁

VBF H→ 𝝁𝝁

10

Testing the power consumption of FlashSim

Using CERN IT machine

● 2x Silver 4110 (8 cores, 16 threads each)
● 4x NVIDIA T4 16 GB GDDR6 for the GPUs
● 194 GB of Memory,
● ~2Tb of storage

hep-benchmark-suite used to monitor the power of the server and the gpu
stats as well through

● `ipmitool dcmi power reading`
● `nvidia-smi`.

For more see “Giordano, D. et al., HEPScore: A new CPU benchmark for the
WLCG (2024), https://doi.org/10.1051/epjconf/202429507024 “, see also the
previous talk “The Role of the HEP Benchmark Suite[...]”

11

Estimating the cost of a training run:
extraction + training
Extraction of training data on CPU from ~ 4M
events

~30 mins for the extraction with Effective Power
Consumptions of 154W: 1.54 kWh for the
extraction of all 20 objects

Training on 4 threads, 1 GPU (similar conditions
to the training nodes on HTCondor)

average power ~211W with GPU util ~40%:
assuming average of 16h training runs for each
simulation model ~68 kWh

Considering efficiency models as well, we
estimate ~100kWh for a full training run!

12

Total server power
W

Idle power
W

Final
consumption

W

Extraction 194 40 (4 GPUs) 154

Training 241 30 (3 GPUs) 211

How to measure the FullSim power consumption fairly

Using again hep-benchmark-suite

We saturate the CPU and run
multiple 4 threads copies, but we
want to consider the consumption
of just one!

We divide by the copies on
“physical” cores since the scaling
of consumption with
hyperthreading is different

In our case 16 physical cores, 4
threads jobs -> consider just ¼ of
the consumption vs idle

13

Idle 0-N
physical

cores

Hyperthreading

Co
ns

um
pt

io
n

Simulation costs

Both tested on RunII TTbar simulation, using 4 threads (and optionally 1 GPU)

Caveat: CMS FullSim running gen-sim and reco. Best comparison would be FlashSim vs
sim-digi-reco; however the consumption data and the throughput allow to extrapolate a

reasonable estimate

FlashSim on GPU has a 3 orders of magnitude reduction in the cost of energy measured as
kWh/ev!

14

Process
Total server power

W
Idle power (to subtract)

W
Final consumption

W Throughput (ev/s) kWh/ev

FlashSim on GPU 253 30 (3 GPUs) 223 ~163 Hz 3,80E-07

FlashSim on CPU 200 40 (4 GPUs) 160 ~1 Hz 4,40E-05

FullSim 256
40 (4 GPUs)+ 72 (other

copies running)=112 144 ~0.07 Hz 5,00E-04

Conclusions
CMS is investigating FlashSim as the next approach of
simulation during Run3/High-Lumi

We also save a great amount of energy spent per event
simulated, thanks to the speed of the framework

Next steps include a real-time measurements of the
consumption when deploying jobs on HTCondor, as well as the
addition of FlashSim to the hep-benchmark-suite

contact: francesco.vaselli@cern.ch

15

For more FlashSim, see also:

● CHEP24 Plenary talk
● CMS DPS Note
● CMS NOTE 2023 003 (old prototype with discrete flows)
● Technical paper: 2402.13684 (DOI)

mailto:francesco.vaselli@cern.ch
https://www.google.com/url?q=https://indico.cern.ch/event/1338689/contributions/6009792/&sa=D&source=editors&ust=1734007235945020&usg=AOvVaw2booG6H_cifMqjDKjJhwKt
https://www.google.com/url?q=https://cds.cern.ch/record/2913372?ln%3Dit&sa=D&source=editors&ust=1734007235945100&usg=AOvVaw0uJF_1b4irz01hmE2ipXsP
https://www.google.com/url?q=https://cds.cern.ch/record/2858890?ln%3Dit&sa=D&source=editors&ust=1734007235945146&usg=AOvVaw2AuZjWj68hVJVePabsi_g0
https://www.google.com/url?q=https://arxiv.org/abs/2402.13684&sa=D&source=editors&ust=1734007235945182&usg=AOvVaw2rqdYrrYrCnVAfLF_eN4FW
https://www.google.com/url?q=https://iopscience.iop.org/article/10.1088/2632-2153/ad563c&sa=D&source=editors&ust=1734007235945237&usg=AOvVaw2vGisVwYlZ_-FregvulAhO

Backup

16

Testing the power consumption of FlashSim

22 simulation models

your typical working node

001 (11390793.000.000) 11/25 09:34:59 Job executing on host:
<188.184.195.30:9618?addrs=188.184.195.30-9618+[2001-1458-301-72--100-107]-9618&alias=b9g47n3042.cern.ch&noUDP&sock=startd_4458_654b>

SlotName: slot1_1@b9g47n3042.cern.ch

AvailableGPUs = { GPUs_GPU_c706cc4e }

CondorScratchDir = "/pool/condor/dir_1075127"

Cpus = 4

Disk = 2048

GPUs = 1

GPUs_GPU_c706cc4e = [GlobalMemoryMb = 32494; MaxSupportedVersion = 12040; DriverVersion = 12.4; ComputeUnits = 80; ECCEnabled = true; DeviceUuid =
"c706cc4e-dd01-b90c-abc5-f5dc076779c4"; DeviceName = "Tesla V100S-PCIE-32GB"; CoresPerCU = 64; ClockMhz = 1597.0; DevicePciBusId = "0000:07:00.0"; Capability = 7.0; Id = "GPU-c706cc4e"]

Memory = 8000

17

Partitionable Resources : Usage Request Allocated Assigned

 Cpus : 0.95 4 4

 Disk (KB) : 653151 750000 751616

 Gpus (Average) : 0.22 1 1 "GPU-c706cc4e" validation to be taken
into account?

 GpusMemory (MB) : 1470

 Memory (MB) : 1538 8000 8000

18

“Discrete” Flows

Build an (efficient) invertible transformation is not easy

Composition of simple transformations, correlated so that the
jacobian is tractable

Affine transform:

19

f1

f2

f3

Adapted from https://ehoogeboom.github.io/post/en_flows/

https://www.google.com/url?q=https://ehoogeboom.github.io/post/en_flows/&sa=D&source=editors&ust=1734007236045705&usg=AOvVaw2WO4OqA0KiWJEPdZpJq9CA

Main idea:

Learn vector field u,
approximation of v

u is the field going from
noise to data under a
Gaussian assumption

t=0: p(z) = N(0,1)

t=1: p(z) = N(x, sigma_min)

20

y = NN(x)
Loss = || u - y ||, simple regression!

Flow Matching: basic idea

Model architecture and libraries

We use PyTorch as Deep
Learning library

The architecture being used is a
ResNet with some additional
Gating (GLU layers) to improve
the response to conditioning

~2M parameters, around 1-2
days of training on HTCondor
(data is the bottleneck)

21

Conditioning and preprocessing are crucial
Some properties have obvious correlations
with generator level information

● generated vs reconstructed
four-momentum

● MC flavour with tagging variables

Two crucial points to reproduce correlations

● Conditioning:
○ e.g. is it b-quark jet?

● Transformations:
○ standard scaling
○ better learn PT

reco or PT
reco /PT

gen ?
○ tails matter for physics (apply logs when needed)

22

physical
space

NN
space

We model the efficiencies with a basic NN

Efficiency = PRECO
 (pT,η,ϕ,...)

23

NN to learn FullSim reconstruction
probability (efficiency) as a function of the

GEN inputs

y ~ unif([0,1))

isReco = DNN(inputs) > y

We must decide whether to
simulate a given object!

GEN + EXTRA MODEL PRECO

The final structure combines the two modules

A reconstructed object may originate from
multiple sources

● genuine signal
● particles with similar signature
● detector interactions and decays
● fakes, duplicates, pileup

Each object is handled by FlashSim with
the various models

An efficiency model for each source

A properties model for each source

Reconstructed
Muons

Generator
level prompt

Muons

Hadron
decays in jets

mu1

mu2

mu3

genmu1

genmu2

genmu3

jet1
jet2
jet3
jet4
jet5 24

Training resources and where to train

25

After optimizing the different modules, we
can submit a series of train-all scripts to
HTCondor

Need to train ~
20 Models + Efficiencies

Training on GPU, it takes about 1-2 days

Convenient for retrain campaigns on new
NanoAOD versions!

Speed

26

● The current prototype with ~20
properties model and ~20 efficiency
models, starting from existing
generated samples runs between
10Hz and 1KHz

○ Accuracy of integration
○ Availability of GPU vs Single CPU

● How fast do we need FlashSim to be
○ If you already have generated samples, as

fast as possible
○ If the generator is very slow, we are easily

in the shadow of the generator
● What if we can avoid being

generator-speed limited by reusing
generated events?

○ Overampling!

Processor ODE accuracy (timesteps) Event simulation rate
GPU 3060 100 325 Hz

GPU 3060 20 690 Hz

CPU 1-core 100 15 Hz

CPU 1-core 20 60 Hz

CPU 4-core 20 120 Hz

Event generation speed Ratio to Geant4-based

Generator
speed (Hz)

Oversample
factor

0.1Hz Geant4
based sim

10Hz
Flashsim

100Hz
Flashsim

1KHz
Flashsim

10Hz
Flashsim

100Hz
Flashsim

1KHz
Flashsim

available 1x 0.10 Hz 10.00 Hz 100.00 Hz 1000.00 Hz 100.0x 1000.0x 10000.0x

50.00 Hz 1x 0.10 Hz 8.33 Hz 33.33 Hz 47.62 Hz 83.5x 334.0x 477.1x

50.00 Hz 10x 0.10 Hz 9.80 Hz 83.33 Hz 333.33 Hz 98.1x 833.5x 3334.0x

1.00 Hz 1x 0.09 Hz 0.91 Hz 0.99 Hz 1.00 Hz 10.0x 10.9x 11.0x

1.00 Hz 10x 0.10 Hz 5.00 Hz 9.09 Hz 9.90 Hz 50.5x 91.8x 100.0x

0.05 Hz 1x 0.03 Hz 0.05 Hz 0.05 Hz 0.05 Hz 1.5x 1.5x 1.5x

0.05 Hz 10x 0.08 Hz 0.48 Hz 0.50 Hz 0.50 Hz 5.7x 6.0x 6.0x

Oversampling

27

Is oversampling introducing biases?

Let’s test it against full sim

● We start from a sample for which we
have 8M full sim events

● We take a fraction (1/6th, 1.3M events)
of the full sim events and we can check
how oversampling (6x or 10x) it would
compare to the full sim sample

● Typical LHC MC samples are randomly
sampled “twice”

○ in the generator
○ in simulating the detector response

● In many cases a large part of the uncertainty
originates from the detector response

○ generator information can be reused

We call “oversampling” the repeated usage of the
same generator event for multiple simulations

● Proper statistical treatment is needed for
events originating from “same gen”

○ count events that end up in the same bin of a
histogram as correlated

○ consider events in different bins as uncorrelated

Oversampling

28

● Typical LHC MC samples are randomly
sampled “twice”

○ in the generator
○ in simulating the detector response

● In many cases a large part of the uncertainty
originates from the detector response

○ generator information can be reused

We call “oversampling” the repeated usage of the
same generator event for multiple simulations

● Proper statistical treatment is needed for
events originating from “same gen”

○ count events that end up in the same bin of a
histogram as correlated

○ consider events in different bins as uncorrelated

Oversampling

29

● Typical LHC MC samples are randomly
sampled “twice”

○ in the generator
○ in simulating the detector response

● In many cases a large part of the uncertainty
originates from the detector response

○ generator information can be reused

We call “oversampling” the repeated usage of the
same generator event for multiple simulations

● Proper statistical treatment is needed for
events originating from “same gen”

○ count events that end up in the same bin of a
histogram as correlated

○ consider events in different bins as uncorrelated

Training samples vs flash-simulated samples

Samples used in training

30

Samples simulated for event validation

Sample Events
tt̅ 800k

DY HT [100, 200], 2J MLL [200-1400] 930k

HH → bb bb 840k

X(3000) → Y(500) H(125) → (bb) (WW → 2q 2l𝜈) 147k

X → HH → qq qq (MX 900, 1200, 1800; MH 365, 400, 18) 90k

SMS TchiZH mNLSP200-1500 300k

X(1200) → Y(300) H(125) → bb 𝛾𝛾 400k

VBF H → 𝜏𝜏 270k

bbA → ZH → ll 𝜏𝜏 (M = 900) 33k

Sample Events
tt̅ 100M

DY HT [100, 200] 25M

H → 𝜇𝜇 1M

ZH 300k

jj + ll (ewk) 8M

About 4M events have been used to train FlashSim models while more than 100M events have been generated to make the plots of the event level
validation. Some simulated samples, such as H → 𝜇𝜇, were not used in training. For samples used in training, such as tt̅, the event validation
showed a remarkable agreement between FlashSim and FullSim even if only a fraction of less than 1%, of the 100M events available, was used
for training.

Efficiency models
Given a source object to we get a reconstructed
one?

● Efficiency models are trained as simple
classifiers with binary cross-entropy loss

○ output can be interpreted as a probability!
● At inference time we just toss in [0,1] and

compare with model probability

31

Prompt muon efficiency Prompt muon duplicate probability

Probability of a jet producing a mu

Fullsim Flashsim

Duplicates can be
handled by training
a second classifier
to predict when a
second copy is
produced

Vertex and Pileup

32

Secondary Vertices

33

Secondary Vertex from Taus and Heavy Flavour

34

SV from GenJets

35

Jets and Fake Jets

36

Tau

37

Signal Background

Tau properties

38

Muon features

39

FatJets

40

SubJets

41

Electrons

42

Photon from generator level photons

43

Photon from Jets

44

MET

45

Z(ll)H(bb)

46

VBF Higgs to mumu

47

