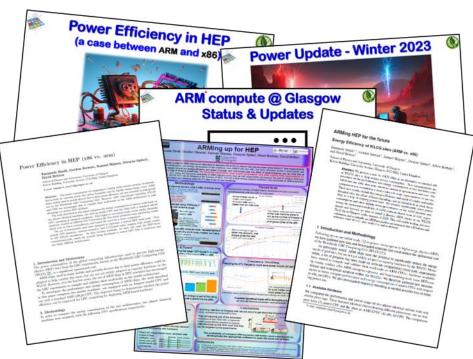


Watt Counts: ARM Compute & Energy Accounting in the WLCG

Emanuele Simili, Gordon Stewart, Samuel Skipsey Albert Borbely & David Britton (ScotGrid Glasgow) WLCG Environmental Sustainability Workshop @ CERN - 12 December 2024

Outline

- Performance per Watt (x86 vs ARM)
 - motivations & methodology
 - updated HS23/Watt and Frequency Scan results
 - data processing improvements (thanks HEP-Score working group)
- Heterogeneous Tier2 Cluster @ ScotGrid Glasgow
 - configuration and dual queue management
 - ARM energy savings
- > Toward a WLCG global CO_2 accounting ...
 - what is currently measured (ATLAS PanDA)
 - what we can measure more precisely (kWh)
 - accounting strategy and Proof of Concept


Motivations & Methodology

In 2021 we started investigating alternative architectures for Grid computing, starting with **ARM** chips ...

Lot has happened since then:

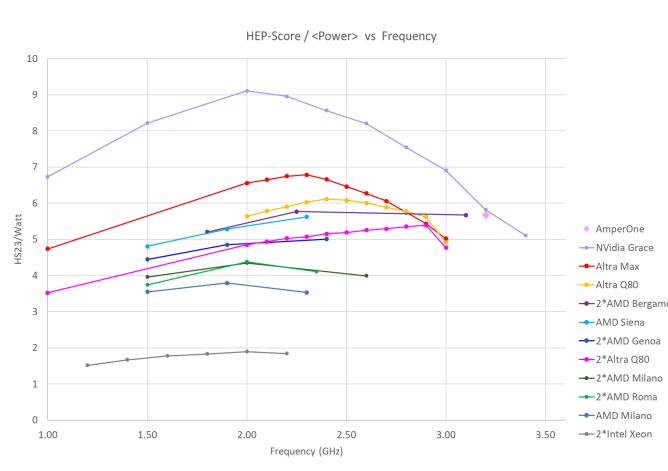
- most LHC experiments ported their software to ARM,
- physics validations had been performed,
- heterogeneous computing cluster set-up (x86 + ARM),
- HEP-Score collaboration and improved methodology,
- dissemination of results, ...

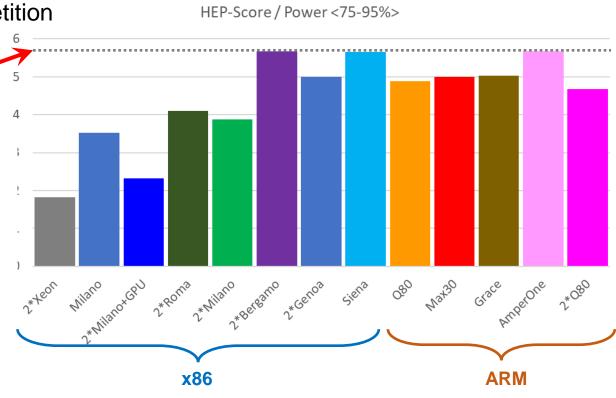
Methodology:

As benchmark, we rely on the HEP-Score & the HEP-Benchmarking Suite:

- HEP-Suite: <u>https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite</u>
- HEP-Score: <u>https://gitlab.cern.ch/hep-benchmarks/hep-score</u>

As for collecting metrics, so far I have been using my own script to exports CPU, RAM, Frequency and Power usage (via **IPMI tools:** <u>https://github.com/ipmitool/ipmitool</u>) into a CSV file ... but now the HEP-Suite itself provides such metric exporters as plug-ins.

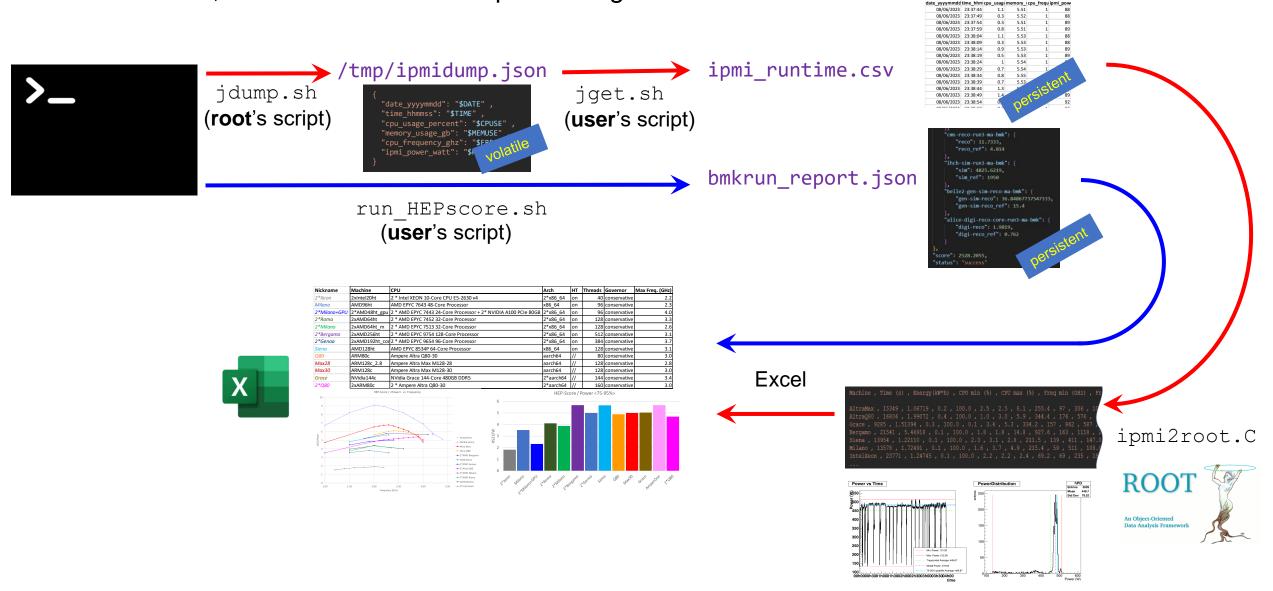

Results are then processed to generate plots, integrate the energy usage, and do some statistical calculations. The final output (**HS23/Watt**) enable us to compare various machine based on performance per unit power.


Performance/Watt (ARM vs. x86)

To account for the shape of HEP-Score workloads, we calculate the **Figure of Merit** (**FoM**) as: **HS23/Power<75-95%>** And, finally, we can see how various machines compare against each other.

The trend of power optimization has sparked a healthy competition between hardware manufacturers ...

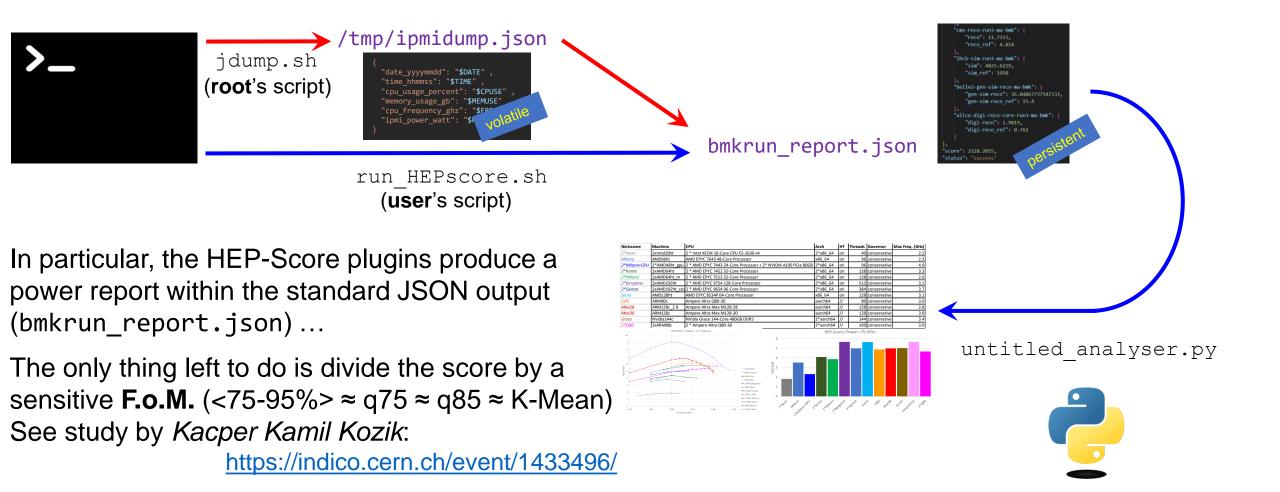
New generation **x86** now match **ARM**s performance/watt!



HEP-Score/Watt vs. **CPU Frequency** gives a more complete picture, and shows optimal performance per watt at mid frequency range. Also, **ARM** CPUs allow for a finer tuning of the clock speed to obtain a better **HS23/Watt** (for a slightly longer run-time).

Data Processing (past)

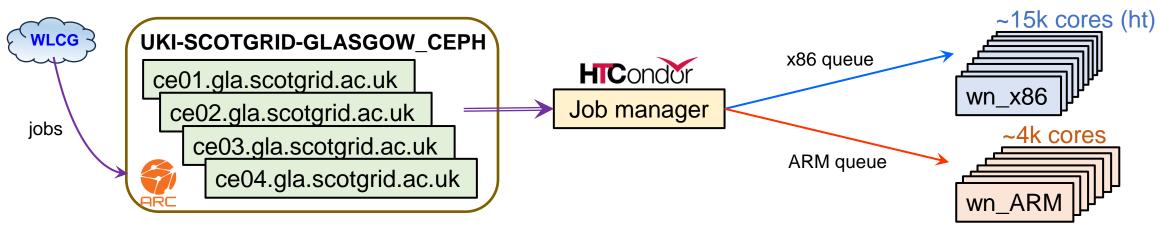
This was the flow, from data collection to processing and visualization ...

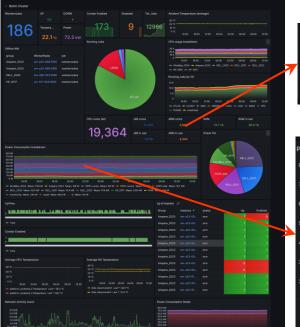


Data Processing (present)

In view of CHEP 2024 and to populate our web interface, I simplified the flow with a Python script ... 18/06/2023 23:37:49 08/06/2023 23:37:54 08/06/2023 23:37:59 08/06/2023 23:38:04 08/06/2023 23:38:00 08/06/2023 23:38:14 08/06/2023 23:38:19 08/06/2023 23:38:24 /tmp/ipmidump.json ipmi runtime.csv 08/06/2023 23:38:29 08/06/2023 23:38:34 08/06/2023 23:38:39 jdump.sh jget.sh 08/06/2023 23:38:44 08/06/2023 23:38:49 08/06/2023 23:38:54 (**root**'s script) 'time hhmmss": "\$TIME" (**user**'s script) cpu usage percent": "\$CPUSE" emory usage gb": "\$MEMUSE co-run3-ma-bm "cpu freauencv ghz reco": 11.7333, sim-run3-ma-bmk" im": 4825.6219. bmkrun report.json im ref": 1950 lle2-gen-sim-reco-ma-bmk": sim-reco": 36.848677375473 run HEPscore.sh ice-digi-reco-core-run3-ma-bmk (**user**'s script) ore": 2528.205 EPYC 7643 48-Core Processo AMO EPVC 7443 24-Core Pro Excel ere Altra Max M128 a Grace 144-Core 480GB DI pow_report.json j2r.py Web-Import SmartPro Web: https://www.ppe.gla.ac.uk/smartpro/ HEPScore/UnitCost Tano (c) = 2"AMD Borne + 2"AND Milan = Tris Q80 + 2"AND Benzame for quote id toamph/123

Data Processing (future)


With the new HEP-Score plugins, the flow will simplify even further ...

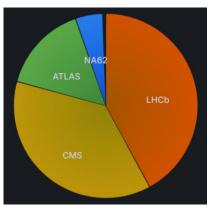

And ... add the power metric (and the HS23/Watt) to the HEP-Score DB !

Heterogeneous Compute Cluster @ ScotGrid

The **ScotGrid Glasgow** Tier2 cluster provides **ARM** resources to the WLCG via standard job submission endpoints.

Our monitoring system provides real-time view of the cluster via a **Grafana** dashboard.

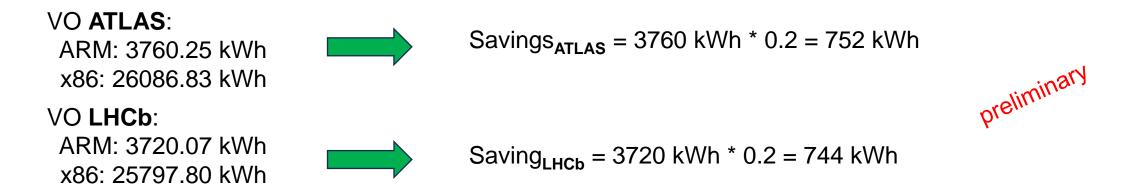
Grafana



At present, **ARM** resources are mainly used by the ATLAS collaboration, after they have successfully completed a physics validation campaign on our cluster.

DELL 2020 15.1 kM

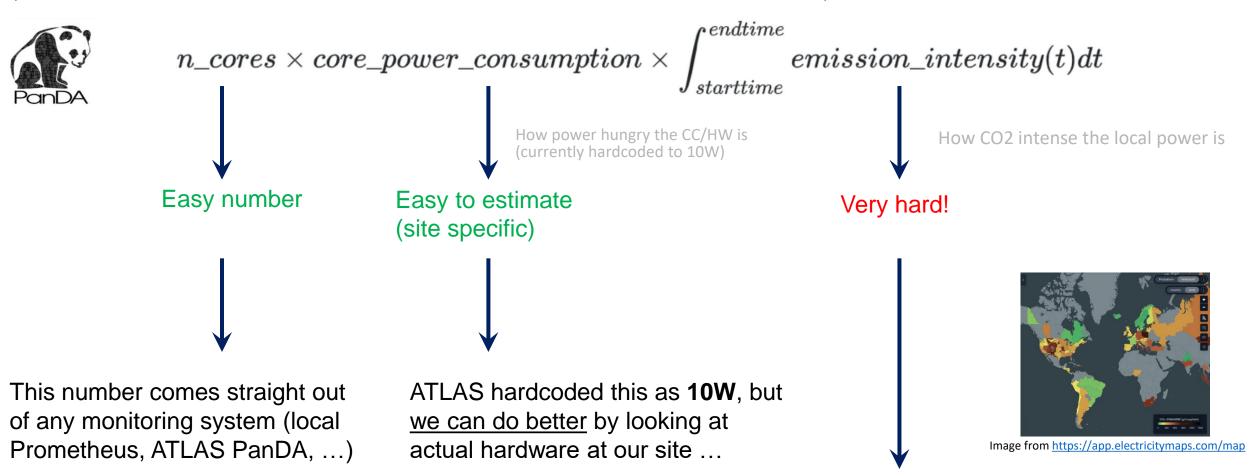
We monitor power usage at machine level, and by combining it with job runtime information, we aim to set up a CO₂ accounting system for Virtual Organizations (VOs) within the WLCG ...


ARM energy savings

Calculating energy savings at our site is a little tricky, because ARM resources are provided as an extra (overpledged): we are offering ARM computing resources to whoever can use them (especially, ATLAS).

But, if we compare the power usage of our latest ARMs machines (**Ampere AltraMax**) with the power that would have been used to run the same jobs on our older x86 infrastructure (**AMD EPYC Milan**), and scale by the number of jobs each VO has been running:

Power Saved = n_cores * (Power/core_{x86} – Power/core_{ARM})
$$\approx$$
 Power_{ARM} * $\Delta_{HS23/W}$ (AltraMax – AMD Milan)


For example: ATLAS has been running a stable enough chunk of jobs on ARM last month, with an average usage 2k cores utilization ...

Note: all this was developed during the last week, using the existing monitoring infrastructure and a couple of handcrafted scripts to export and process Prometheus data. Numbers may not be accurate!

Toward a site-level CO₂ accounting?

Fernando Barreiro Megino has implemented a rough CO₂ calculator in **ATLAS PanDA**, based on the following formula: (<u>https://panda-wms.readthedocs.io/en/latest/advanced/carbon_footprint.html</u>)

Estimating the **CO₂/kWh** is a complex issue, which depends on specific country, geographic area, electricity demand, time of the year, time of the day, ... any power grid has a variable fraction of renewable vs. non-renewable power, and being able to track this in real time is complicated. <u>But, we don't have to do it ourself !</u>

Toward a site-level Power accounting

So ... to avoid headaches and stick to hard data, we start from a straight power accounting. This can be done quite precisely at any WLCG site. Here our strategy:

1) Gather Metrics from local Prometheus: Resource utilization by VO: Cluster-wide power consumption:

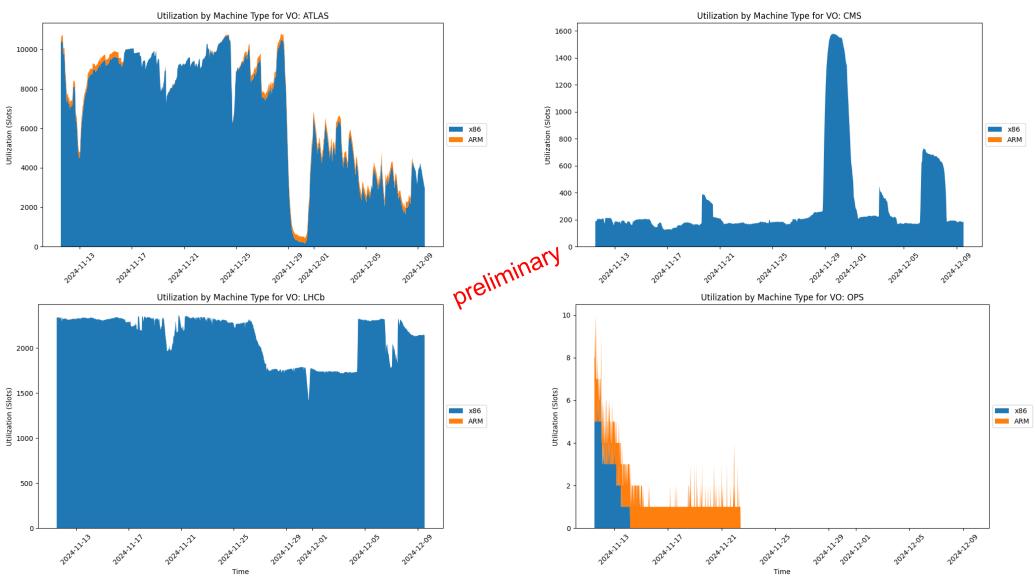
```
(count(node_condor_cpu{job="workernodes"}) by (vo))
(node_power_watts{job="workernodes"})
```

2) Perform some Calculations:

Total Power = Active power + Idle power VO-specific power = %_usage × Total Power

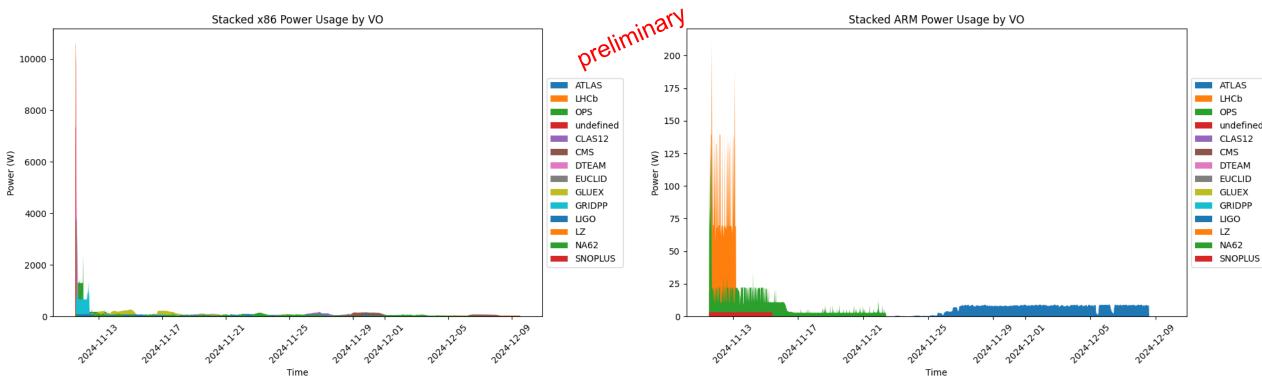
Optional: adjust for machine types and specific job efficiencies (for now we only split between ARM & x86).

3) Generate Reports:


Produce tables or charts showing energy usage per VO.

4) From Power to CO₂ usage can be as simple as multiplying by the country average CO2/kWh, or as complicated as integrating the convolution of Power Usage * instantaneous local CO₂/kWh during the sampled period:

 $power_consumption imes \ emission_intensity(t)dt$


Proof of Concept

So far, I made a **Python** script that exports metrics from the **Prometheus API** and does some calculations. The first step is extracting Job-Slots occupancy by VO (and Architecture). See examples in 1 month period:

Proof of Concept (2)

With these numbers, we can then scale the power usage and assign it proportionally to VOs. The 2 plots below show the proportional power usage by VO over 1 month period:

And these are integrated power usages (kWh) for a few sampled VOs over the same period:

VO ATLAS: ARM: 3760.25 kWh x86: 26086.83 kWh VO LHCb: ARM: 3720.07 kWh x86: 25797.80 kWh VO OPS: ARM: 2721.78 kWh x86: 25950.92 kWh VO CLAS12: ARM: 0.00 kWh x86: 25628.82 kWh VO CMS: ARM: 0.00 kWh x86: 24582.94 kWh VO DTEAM: ARM: 0.00 kWh x86: 25812.16 kWh VO EUCLID: ARM: 0.00 kWh x86: 10602.08 kWh VO GLUEX: ARM: 0.00 kWh x86: 26231.67 kWh

Issue and possible solutions

The current strategy just calculates the proportional Power Distribution: use the % resource utilization by VO to allocate total power usage. For example: VO "ScotGrid" uses 30% of the cluster resources, so ScotGrid gets billed for 30% of the total power (active + idle). This is an executive choice, but I am ready to hear your suggestions and criticism ... for instance:

1. Idle Power Allocation

<u>Option A</u>: Divide idle power among all VOs (including inactive ones)

Pros: Simple and reflects the cost of having infrastructure ready for all VOs.

Cons: Inactive VOs may complain about being "billed" for resources they didn't use.

Option B: Divide idle power among active VOs only

Pros: Aligns cost with actual resource usage.

Cons: Few active VOs at any time may bear a disproportionate share of the idle power cost, which could seem unfair.

Suggestion: Option A is better for fairness as all VOs benefit from having the cluster online.

Rationale: if you rent a car and keep it parked in the drive-way, you may save on gas but you still pay for the rent!

2. Accounting for Machine Types

Option A: Track job distribution per machine type

Pros: Accurately reflects the true energy cost per VO.

Cons: Adds complexity; might lead to disputes if a VO is often assigned to less efficient machines.

Option B: Average out hardware efficiency

Pros: Simple and less controversial. Treat the cluster as a "black box" delivering aggregated services.

Cons: Loses granularity in reporting efficiency.

Suggestion: Option B for simplicity. But we consider expanding it to include machine-specific efficiencies and PUE ("bill" the site, which should push site level optimization?).

Conclusions & Outlook

- Improving on the methodology and developing an automated Analysis framework:
 - energy measurement now integrated in HEP-Score
 - HS23/Watt metric soon to be included in the HEP-Score DB (one stop shop for hardware rating!)
 - (maybe) add the frequency dependence in the **DB** for better characterization of hardware?
- ✤ Implement a prototype for <u>WLCG global CO₂ accounting</u> possibly, not in isolation
 - work harder on developing a robust Power Accounting strategy!
 - iron out the details in collaboration with VOs & WLCG sites (idle, PUE, hardware efficiency)
 - talk to experts on Power grids to attach the CO₂ cost to power
- Keep looking at more energy efficient hardware solutions (x86, ARM, RISC-V, GPUs)

Emanuele Simili, Gordon Stewart, Samuel Skipsey Albert Borbely & David Britton (ScotGrid Glasgow) WLCG Environmental Sustainability Workshop @ CERN - 12 December 2024

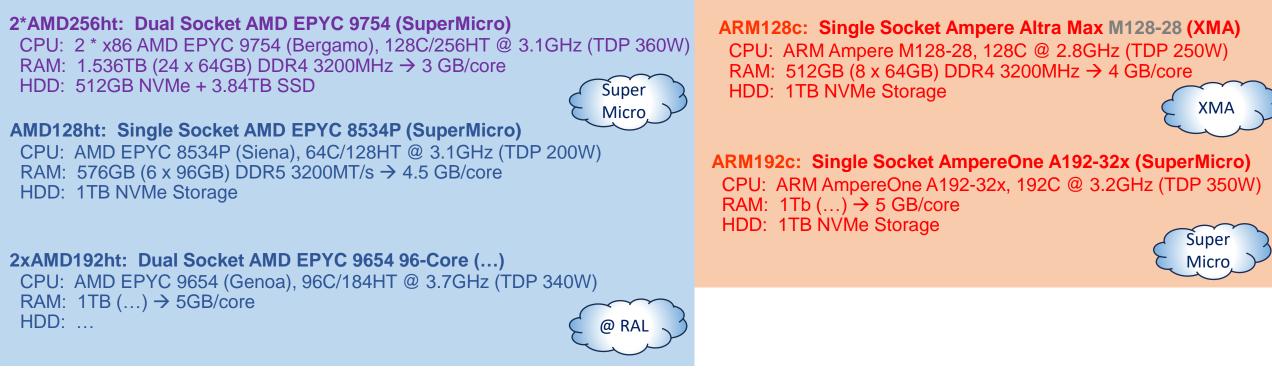
in-House (production)

in-House (testing)

AMD96ht: Single AMD EPYC 7003 (GIGABYTE)

CPU: x86 AMD EPYC 7643, 48C/96HT @ 2.3GHz (TDP 225W) RAM: 256GB (16 x 16GB) DDR4 3200MHz → 2.7 GB/core HDD: 3.84TB SSD SATA

2xAMD48ht+GPU: Dual Socket AMD EPYC 7443 (DELL)

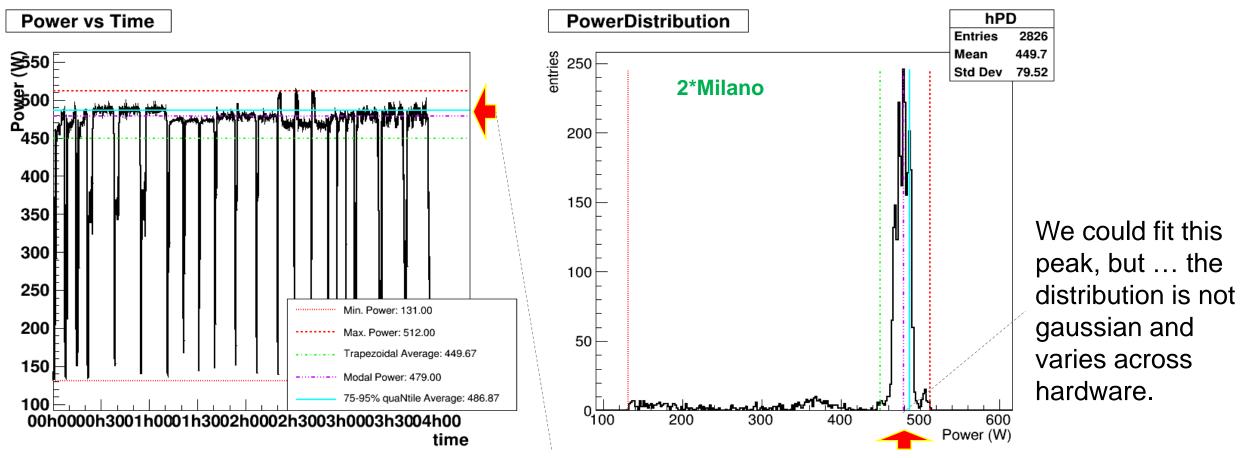

ARM80c: Single socket Ampere Altra Q80-30 (GIGABYTE) CPU: ARM Ampere Q80-30, 80C @ 3GHz (TDP 210W) RAM: 256GB (16 x 16GB) DDR4 3200MHz → 3.2 GB/core HDD: 3.84TB SSD SATA

Grace144c: Dual Socket* NVidia Grace (SuperMicro)

CPU: NVidia Grace 144-Core 480GB DDR5 @ 3.4GHz (TDP 500W) RAM: 480GB (on chip) DDR5 4237MHz → 3.3 GB/core HDD: 1TB NVMe + 4TB NVMe

And, we also have a **RISC-V** test box ...

Remote Testing

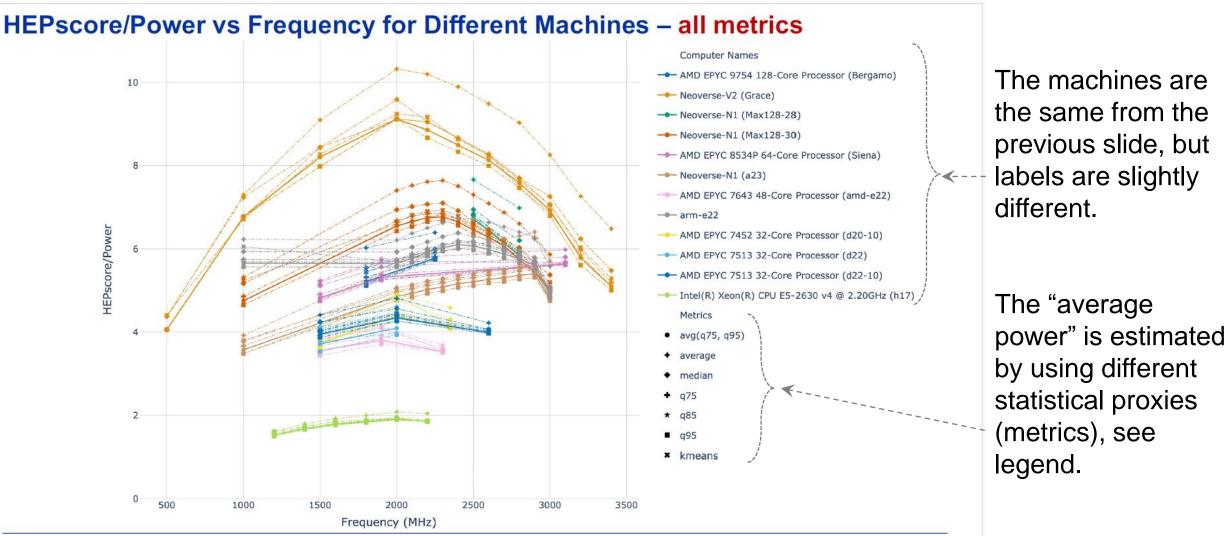


We have expressed our interest in testing new hardware to a few vendors, and from time to time we get remote access to new machines. We have also gathered data from other WLCG sites (**RAL**).

But, our machine sample is negligible compared to what is available in the HEP-Score DB ...

What Watt

We wish to extract an accurate **Figure of Merit** (**FoM**) of power usage for a standard HEP workload from smaller **HEP-Score** containerized jobs, which is easy to implement and consistent across hardware.



<75-95%> Blue line sits nicely in the plateau !

By arranging the data in power order we can perform an upper quartile average, but discard the top 5% of data to remove isolated peaks. This we call 75-95% quantile average.

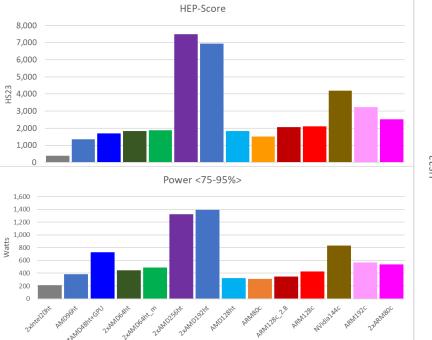
What Watt (reprise)

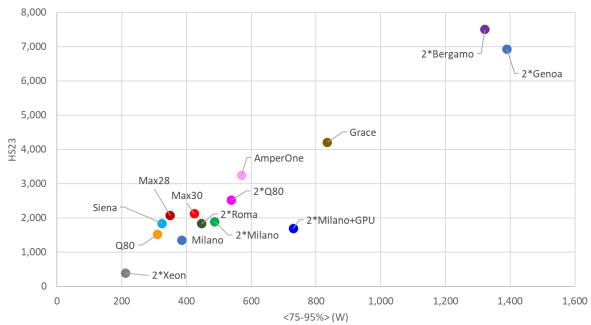
The **HEPiX Benchmark Working Group** has also studied various statistical proxies for power usage. In particular, see the presentation by Kacper Kamil Kozik: <u>https://indico.cern.ch/event/1433496/</u>

28 August 2024

more HS23/Watt

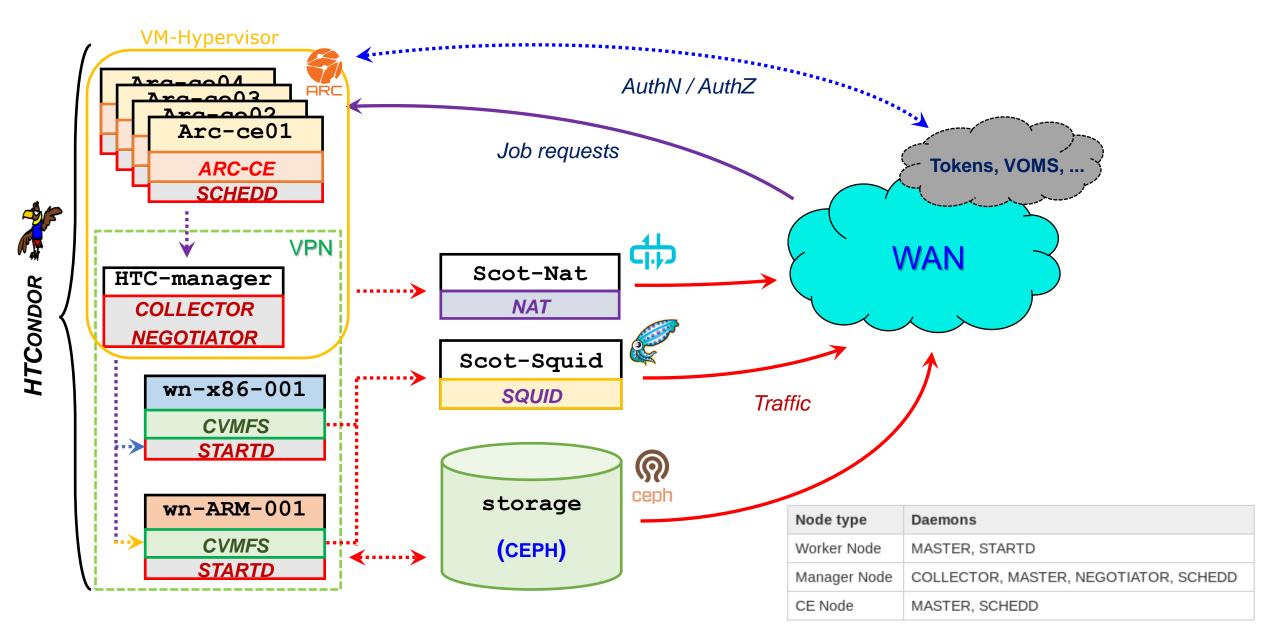
GPU not used

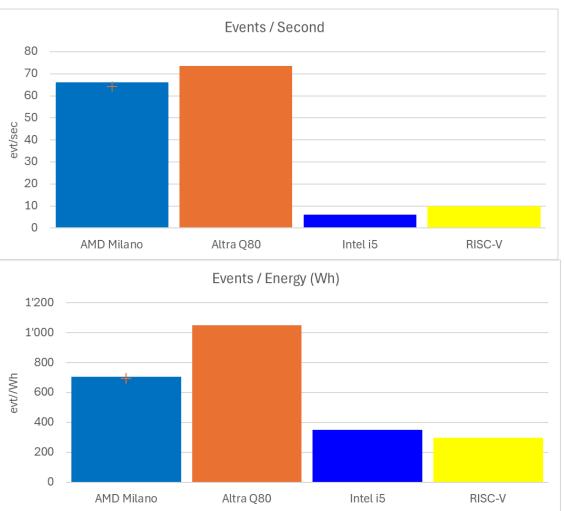

Using our FoM, we measure performance per watt as: HS23 / Power<75-95%>


V

HEP-Score / Power <75-95%>

no zastano zerena zerena sere da santa santa eren eren zada


Nickname	Machine	CPU	Arch	HT	Threads	Governor	Max Freq.	HS23/W	<75-95%>	Watt/core
2*Xeon	2xIntel20ht	2 * Intel XEON 10-Core CPU E5-2630 v4	2*x86_64	0n-	40	conservative	2.2	1.822	211.7	5.3
Milano	AMD96ht	AMD EPYC 7643 48-Core Processor	x86_64	on	96	conservative	2.3	3.525	384.7	4.0
2*Milano+GPU	2*AMD48ht_gpu	2 * AMD EPYC 7443 24-Core Processor + 2* NVIDIA A100 PCIe 80GB	2*x86_64	on	96	conservative	4.0	2.318	730.1	7.6
2*Roma	2xAMD64ht	2 * AMD EPYC 7452 32-Core Processor	2*x86_64	on	128	conservative	3.3	4.092	446.3	3.5
2*Milano	2xAMD64ht_m	2 * AMD EPYC 7513 32-Core Processor	2*x86_64	on	128	conservative	2.6	3.876	486.9	3.8
2*Bergamo	2xAMD256ht	2 * AMD EPYC 9754 128-Core Processor	2*x86_64	on	512	conservative	3.1	5.670	1,322.2	2.6
2*Genoa	2xAMD192ht_cor	2 * AMD EPYC 9654 96-Core Processor	2*x86_64	on	384	conservative	3.7	4.991	1389	3.6
Siena	AMD128ht	AMD EPYC 8534P 64-Core Processor	x86_64	on	128	conservative	3.1	5.659	324.9	2.5
Q80	ARM80c	Ampere Altra Q80-30	aarch64	//	80	conservative	3.0	4.881	309.9	3.9
Max28	ARM128c_2.8	Ampere Altra Max M128-28	aarch64	//	128	conservative	2.8	5.911	349.9	2.7
Max30	ARM128c	Ampere Altra Max M128-30	aarch64	//	128	conservative	3.0	5.002	424.1	3.3
Grace	NVidia144c	NVidia Grace 144-Core 480GB DDR5	2*aarch64	//	144	conservative	3.4	5.035	835.2	5.8
AmperOne	ARM192c	AmperOne 192-Core	aarch64	//	192	conservative	3.2	5.673	570.1	3.0
2*Q80	2xARM80c	2 * Ampere Altra Q80-30	2*aarch64	//	160	conservative	3.0	4.681	538.5	3.4


ScotGrid Tier2 Cluster Overview

Preliminary look at RISC-V

RISC-V is an open standard Instruction Set Architecture (**ISA**) based on established Reduced Instruction Set Computing principles, and offered under <u>royalty-free open-source license</u>. Support for RISC-V was added to the Linux kernel in 2022, the 64-bit variant (riscv64) in 2023.

We recently acquired a fully integrated RISC-V desktop PC running Fedora 38 (for ~2.5k £) ...

Milk-V Pioneer

We ran a **Geant4** full detector simulation as benchmark, and compared the RISC-V performance with 3 types of hardware (desktop i5 PC, AMD EPYC and ARM Ampere Q80 servers).

We evaluated the performance as **Events/Second** and **Events/Sec/Watt**. (≈ **Events/Energy**).

Our results show that, at present, the **RISC-V** PC performs slightly better than a 2017 desktop, but the hardware is <u>not</u> <u>mature enough</u> to compete with server grade **x86** and **ARM** CPUs (and there are currently no RISC-V server solutions).

With growing interest for the RISC-V architecture (e.g., **EPI** <u>https://www.european-processor-initiative.eu/</u>), the landscape can rapidly evolve, and we want to be prepared!