
Watt Counts: ARM Compute

& Energy Accounting in the WLCG

Outline
➢ Performance per Watt (x86 vs ARM)

- motivations & methodology

- updated HS23/Watt and Frequency Scan results

- data processing improvements (thanks HEP-Score working group)

➢ Heterogeneous Tier2 Cluster @ ScotGrid Glasgow

- configuration and dual queue management

- ARM energy savings

➢ Toward a WLCG global CO2 accounting …

- what is currently measured (ATLAS PanDA)

- what we can measure more precisely (kWh)

- accounting strategy and Proof of Concept

In 2021 we started investigating alternative architectures for Grid

computing, starting with ARM chips …

Lot has happened since then:

- most LHC experiments ported their software to ARM,

- physics validations had been performed,

- heterogeneous computing cluster set-up (x86 + ARM),

- HEP-Score collaboration and improved methodology,

- dissemination of results, …

Motivations & Methodology

Methodology:

As benchmark, we rely on the HEP-Score & the HEP-Benchmarking Suite:

HEP-Suite: https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite

HEP-Score: https://gitlab.cern.ch/hep-benchmarks/hep-score

As for collecting metrics, so far I have been using my own script to exports CPU, RAM, Frequency and Power usage

(via IPMI tools: https://github.com/ipmitool/ipmitool) into a CSV file … but now the HEP-Suite itself provides such

metric exporters as plug-ins.

Results are then processed to generate plots, integrate the energy usage, and do some statistical calculations.

The final output (HS23/Watt) enable us to compare various machine based on performance per unit power.

https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite
https://gitlab.cern.ch/hep-benchmarks/hep-score
https://github.com/ipmitool/ipmitool

Performance/Watt (ARM vs. x86)

HEP-Score/Watt vs. CPU Frequency gives a more

complete picture, and shows optimal performance

per watt at mid frequency range. Also, ARM CPUs

allow for a finer tuning of the clock speed to obtain

a better HS23/Watt (for a slightly longer run-time).

To account for the shape of HEP-Score workloads, we calculate the Figure of Merit (FoM) as: HS23/Power<75-95%>

And, finally, we can see how various machines compare against each other.

The trend of power optimization has sparked a healthy competition

between hardware manufacturers …

New generation x86 now match ARMs performance/watt!

ARMx86

{
"date_yyyymmdd": "$DATE" ,
"time_hhmmss": "$TIME" ,
"cpu_usage_percent": "$CPUSE" ,
"memory_usage_gb": "$MEMUSE" ,
"cpu_frequency_ghz": "$FREQ" ,
"ipmi_power_watt": "$POWER"

}

jdump.sh

(root’s script)

/tmp/ipmidump.json
jget.sh

(user’s script)

ipmi_runtime.csv

date_yyyymmdd time_hhmmsscpu_usage_percentmemory_usage_gbcpu_frequency_ghzipmi_power_watt

08/06/2023 23:37:44 1.1 5.51 1 88

08/06/2023 23:37:49 0.3 5.52 1 88

08/06/2023 23:37:54 0.3 5.51 1 89

08/06/2023 23:37:59 0.8 5.51 1 89

08/06/2023 23:38:04 1.1 5.53 1 88

08/06/2023 23:38:09 0.3 5.53 1 88

08/06/2023 23:38:14 0.9 5.53 1 89

08/06/2023 23:38:19 0.5 5.53 1 89

08/06/2023 23:38:24 1 5.54 1 89

08/06/2023 23:38:29 0.7 5.54 1 89

08/06/2023 23:38:34 0.8 5.55 1 92

08/06/2023 23:38:39 0.7 5.53 1 92

08/06/2023 23:38:44 1.3 5.55 1 89

08/06/2023 23:38:49 1.4 5.56 1 89

08/06/2023 23:38:54 0.8 5.55 1 92

08/06/2023 23:38:59 0.7 5.56 1 92

08/06/2023 23:39:04 0.9 5.55 1 88

08/06/2023 23:39:09 0.9 5.55 1 88

08/06/2023 23:39:14 0.6 5.55 1 88

08/06/2023 23:39:19 0.8 5.55 1 88

08/06/2023 23:39:24 0.9 5.55 1 89

08/06/2023 23:39:29 1.1 5.55 1 89

08/06/2023 23:39:34 1 5.55 1 90

08/06/2023 23:39:39 0.8 5.56 1 90

08/06/2023 23:39:44 1.1 5.56 1 91

08/06/2023 23:39:49 1.2 5.56 1 91

08/06/2023 23:39:54 32.1 5.99 1 104

08/06/2023 23:39:59 26.9 6.96 1 104

08/06/2023 23:40:04 64.5 11.59 2.8 122

08/06/2023 23:40:09 96.1 29.26 2.8 122

08/06/2023 23:40:14 97.2 50.6 2.8 285

08/06/2023 23:40:19 93.4 67.03 1.54 285

08/06/2023 23:40:24 98.4 71.41 2.8 288

08/06/2023 23:40:29 99.1 71.49 2.8 288

08/06/2023 23:40:34 99.6 71.5 2.8 322

08/06/2023 23:40:39 99.7 71.51 2.8 322

ipmi2root.C

Data Processing (past)
This was the flow, from data collection to processing and visualization …

run_HEPscore.sh

bmkrun_report.json

(user’s script)

Excel

Nickname Machine CPU Arch HT Threads Governor Max Freq. (GHz)

2*Xeon 2xIntel20ht 2 * Intel XEON 10-Core CPU E5-2630 v4 2*x86_64 on 40 conservative 2.2

Milano AMD96ht AMD EPYC 7643 48-Core Processor x86_64 on 96 conservative 2.3

2*Milano+GPU 2*AMD48ht_gpu 2 * AMD EPYC 7443 24-Core Processor + 2* NVIDIA A100 PCIe 80GB 2*x86_64 on 96 conservative 4.0

2*Roma 2xAMD64ht 2 * AMD EPYC 7452 32-Core Processor 2*x86_64 on 128 conservative 3.3

2*Milano 2xAMD64ht_m 2 * AMD EPYC 7513 32-Core Processor 2*x86_64 on 128 conservative 2.6

2*Bergamo 2xAMD256ht 2 * AMD EPYC 9754 128-Core Processor 2*x86_64 on 512 conservative 3.1

2*Genoa 2xAMD192ht_cons2 * AMD EPYC 9654 96-Core Processor 2*x86_64 on 384 conservative 3.7

Siena AMD128ht AMD EPYC 8534P 64-Core Processor x86_64 on 128 conservative 3.1

Q80 ARM80c Ampere Altra Q80-30 aarch64 // 80 conservative 3.0

Max28 ARM128c_2.8 Ampere Altra Max M128-28 aarch64 // 128 conservative 2.8

Max30 ARM128c Ampere Altra Max M128-30 aarch64 // 128 conservative 3.0

Grace NVidia144c NVidia Grace 144-Core 480GB DDR5 2*aarch64 // 144 conservative 3.4

2*Q80 2xARM80c 2 * Ampere Altra Q80-30 2*aarch64 // 160 conservative 3.0

{
"date_yyyymmdd": "$DATE" ,
"time_hhmmss": "$TIME" ,
"cpu_usage_percent": "$CPUSE" ,
"memory_usage_gb": "$MEMUSE" ,
"cpu_frequency_ghz": "$FREQ" ,
"ipmi_power_watt": "$POWER"

}

jdump.sh

(root’s script)

/tmp/ipmidump.json
jget.sh

(user’s script)

ipmi_runtime.csv

date_yyyymmdd time_hhmmsscpu_usage_percentmemory_usage_gbcpu_frequency_ghzipmi_power_watt

08/06/2023 23:37:44 1.1 5.51 1 88

08/06/2023 23:37:49 0.3 5.52 1 88

08/06/2023 23:37:54 0.3 5.51 1 89

08/06/2023 23:37:59 0.8 5.51 1 89

08/06/2023 23:38:04 1.1 5.53 1 88

08/06/2023 23:38:09 0.3 5.53 1 88

08/06/2023 23:38:14 0.9 5.53 1 89

08/06/2023 23:38:19 0.5 5.53 1 89

08/06/2023 23:38:24 1 5.54 1 89

08/06/2023 23:38:29 0.7 5.54 1 89

08/06/2023 23:38:34 0.8 5.55 1 92

08/06/2023 23:38:39 0.7 5.53 1 92

08/06/2023 23:38:44 1.3 5.55 1 89

08/06/2023 23:38:49 1.4 5.56 1 89

08/06/2023 23:38:54 0.8 5.55 1 92

08/06/2023 23:38:59 0.7 5.56 1 92

08/06/2023 23:39:04 0.9 5.55 1 88

08/06/2023 23:39:09 0.9 5.55 1 88

08/06/2023 23:39:14 0.6 5.55 1 88

08/06/2023 23:39:19 0.8 5.55 1 88

08/06/2023 23:39:24 0.9 5.55 1 89

08/06/2023 23:39:29 1.1 5.55 1 89

08/06/2023 23:39:34 1 5.55 1 90

08/06/2023 23:39:39 0.8 5.56 1 90

08/06/2023 23:39:44 1.1 5.56 1 91

08/06/2023 23:39:49 1.2 5.56 1 91

08/06/2023 23:39:54 32.1 5.99 1 104

08/06/2023 23:39:59 26.9 6.96 1 104

08/06/2023 23:40:04 64.5 11.59 2.8 122

08/06/2023 23:40:09 96.1 29.26 2.8 122

08/06/2023 23:40:14 97.2 50.6 2.8 285

08/06/2023 23:40:19 93.4 67.03 1.54 285

08/06/2023 23:40:24 98.4 71.41 2.8 288

08/06/2023 23:40:29 99.1 71.49 2.8 288

08/06/2023 23:40:34 99.6 71.5 2.8 322

08/06/2023 23:40:39 99.7 71.51 2.8 322

j2r.py

Excel

Data Processing (present)
In view of CHEP 2024 and to populate our web interface, I simplified the flow with a Python script …

run_HEPscore.sh

bmkrun_report.json

(user’s script)

pow_report.json

Web-Import

Nickname Machine CPU Arch HT Threads Governor Max Freq. (GHz)

2*Xeon 2xIntel20ht 2 * Intel XEON 10-Core CPU E5-2630 v4 2*x86_64 on 40 conservative 2.2

Milano AMD96ht AMD EPYC 7643 48-Core Processor x86_64 on 96 conservative 2.3

2*Milano+GPU 2*AMD48ht_gpu 2 * AMD EPYC 7443 24-Core Processor + 2* NVIDIA A100 PCIe 80GB 2*x86_64 on 96 conservative 4.0

2*Roma 2xAMD64ht 2 * AMD EPYC 7452 32-Core Processor 2*x86_64 on 128 conservative 3.3

2*Milano 2xAMD64ht_m 2 * AMD EPYC 7513 32-Core Processor 2*x86_64 on 128 conservative 2.6

2*Bergamo 2xAMD256ht 2 * AMD EPYC 9754 128-Core Processor 2*x86_64 on 512 conservative 3.1

2*Genoa 2xAMD192ht_cons2 * AMD EPYC 9654 96-Core Processor 2*x86_64 on 384 conservative 3.7

Siena AMD128ht AMD EPYC 8534P 64-Core Processor x86_64 on 128 conservative 3.1

Q80 ARM80c Ampere Altra Q80-30 aarch64 // 80 conservative 3.0

Max28 ARM128c_2.8 Ampere Altra Max M128-28 aarch64 // 128 conservative 2.8

Max30 ARM128c Ampere Altra Max M128-30 aarch64 // 128 conservative 3.0

Grace NVidia144c NVidia Grace 144-Core 480GB DDR5 2*aarch64 // 144 conservative 3.4

2*Q80 2xARM80c 2 * Ampere Altra Q80-30 2*aarch64 // 160 conservative 3.0

SmartPro Web:

https://www.ppe.gla.ac.uk/smartpro/

https://www.ppe.gla.ac.uk/smartpro/

{
"date_yyyymmdd": "$DATE" ,
"time_hhmmss": "$TIME" ,
"cpu_usage_percent": "$CPUSE" ,
"memory_usage_gb": "$MEMUSE" ,
"cpu_frequency_ghz": "$FREQ" ,
"ipmi_power_watt": "$POWER"

}

jdump.sh

(root’s script)

/tmp/ipmidump.json

untitled_analyser.py

Data Processing (future)
With the new HEP-Score plugins, the flow will simplify even further …

run_HEPscore.sh

bmkrun_report.json

(user’s script)

Nickname Machine CPU Arch HT Threads Governor Max Freq. (GHz)

2*Xeon 2xIntel20ht 2 * Intel XEON 10-Core CPU E5-2630 v4 2*x86_64 on 40 conservative 2.2

Milano AMD96ht AMD EPYC 7643 48-Core Processor x86_64 on 96 conservative 2.3

2*Milano+GPU 2*AMD48ht_gpu 2 * AMD EPYC 7443 24-Core Processor + 2* NVIDIA A100 PCIe 80GB 2*x86_64 on 96 conservative 4.0

2*Roma 2xAMD64ht 2 * AMD EPYC 7452 32-Core Processor 2*x86_64 on 128 conservative 3.3

2*Milano 2xAMD64ht_m 2 * AMD EPYC 7513 32-Core Processor 2*x86_64 on 128 conservative 2.6

2*Bergamo 2xAMD256ht 2 * AMD EPYC 9754 128-Core Processor 2*x86_64 on 512 conservative 3.1

2*Genoa 2xAMD192ht_cons2 * AMD EPYC 9654 96-Core Processor 2*x86_64 on 384 conservative 3.7

Siena AMD128ht AMD EPYC 8534P 64-Core Processor x86_64 on 128 conservative 3.1

Q80 ARM80c Ampere Altra Q80-30 aarch64 // 80 conservative 3.0

Max28 ARM128c_2.8 Ampere Altra Max M128-28 aarch64 // 128 conservative 2.8

Max30 ARM128c Ampere Altra Max M128-30 aarch64 // 128 conservative 3.0

Grace NVidia144c NVidia Grace 144-Core 480GB DDR5 2*aarch64 // 144 conservative 3.4

2*Q80 2xARM80c 2 * Ampere Altra Q80-30 2*aarch64 // 160 conservative 3.0

In particular, the HEP-Score plugins produce a

power report within the standard JSON output

(bmkrun_report.json) …

The only thing left to do is divide the score by a

sensitive F.o.M. (<75-95%> ≈ q75 ≈ q85 ≈ K-Mean)

See study by Kacper Kamil Kozik:
https://indico.cern.ch/event/1433496/

And … add the power metric (and the HS23/Watt) to the HEP-Score DB !

https://indico.cern.ch/event/1433496/

Heterogeneous Compute Cluster @ ScotGrid

Job manager

UKI-SCOTGRID-GLASGOW_CEPH

ce01.gla.scotgrid.ac.uk

ce02.gla.scotgrid.ac.uk

ce03.gla.scotgrid.ac.uk

ce04.gla.scotgrid.ac.uk

WLCG

x86 queue

ARM queue

wn_x86wn_x86wn_x86wn_x86wn_x86wn_x86wn_x86wn_x86wn_x86

~15k cores (ht)

wn_ARMwn_ARMwn_ARMwn_ARMwn_ARMwn_ARMwn_ARM

~4k cores

The ScotGrid Glasgow Tier2 cluster provides ARM resources to the WLCG via standard job submission endpoints.

At present, ARM resources are mainly used by the

ATLAS collaboration, after they have successfully

completed a physics validation campaign on our cluster.

We monitor power usage at

machine level, and by combining

it with job runtime information, we

aim to set up a CO2 accounting

system for Virtual Organizations

(VOs) within the WLCG ...

jobs

Our monitoring system provides real-time view of the cluster via a Grafana dashboard.

ARM energy savings
Calculating energy savings at our site is a little tricky, because ARM resources are provided as an extra (overpledged):

we are offering ARM computing resources to whoever can use them (especially, ATLAS).

But, if we compare the power usage of our latest ARMs machines (Ampere AltraMax) with the power that would have

been used to run the same jobs on our older x86 infrastructure (AMD EPYC Milan), and scale by the number of jobs

each VO has been running:

VO ATLAS:

ARM: 3760.25 kWh

x86: 26086.83 kWh

VO LHCb:

ARM: 3720.07 kWh

x86: 25797.80 kWh

Note: all this was developed during the last week, using the existing monitoring infrastructure and a couple of hand-

crafted scripts to export and process Prometheus data. Numbers may not be accurate!

Power Saved = n_cores * (Power/corex86 – Power/coreARM) ≈ PowerARM * ΔHS23/W (AltraMax – AMD Milan)

For example: ATLAS has been running a stable enough chunk of jobs on ARM last month, with an average usage 2k

cores utilization …

SavingsATLAS = 3760 kWh * 0.2 = 752 kWh

SavingLHCb = 3720 kWh * 0.2 = 744 kWh

Toward a site-level CO2 accounting?
Fernando Barreiro Megino has implemented a rough CO2 calculator in ATLAS PanDA, based on the following formula:
(https://panda-wms.readthedocs.io/en/latest/advanced/carbon_footprint.html)

How power hungry the CC/HW is
(currently hardcoded to 10W)

Very hard!

This number comes straight out

of any monitoring system (local

Prometheus, ATLAS PanDA, …)

Easy to estimate

(site specific)

Easy number

ATLAS hardcoded this as 10W, but

we can do better by looking at

actual hardware at our site …

Estimating the CO2/kWh is a complex issue, which depends on specific country, geographic area, electricity

demand, time of the year, time of the day, … any power grid has a variable fraction of renewable vs. non-

renewable power, and being able to track this in real time is complicated. But, we don’t have to do it ourself !

How CO2 intense the local power is

Image from https://app.electricitymaps.com/map

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpanda-wms.readthedocs.io%2Fen%2Flatest%2Fadvanced%2Fcarbon_footprint.html&data=05%7C02%7CEmanuele.Simili%40glasgow.ac.uk%7C1d10157dfd83498c771408dd0d4ddbaf%7C6e725c29763a4f5081f22e254f0133c8%7C1%7C0%7C638681350228026236%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=tBlmHLg5HPPBwqqn8KDzD3zXECmSRxcjDIlJP4Dj6O8%3D&reserved=0
https://app.electricitymaps.com/map

Toward a site-level Power accounting
So … to avoid headaches and stick to hard data, we start from a straight power accounting.

This can be done quite precisely at any WLCG site. Here our strategy:

1) Gather Metrics from local Prometheus:

Resource utilization by VO: (count(node_condor_cpu{job="workernodes"}) by (vo))
Cluster-wide power consumption: (node_power_watts{job="workernodes"})

2) Perform some Calculations:

Total Power = Active power + Idle power

VO-specific power = %_usage × Total Power

Optional: adjust for machine types and specific job efficiencies (for now we only split between ARM & x86).

3) Generate Reports:

Produce tables or charts showing energy usage per VO.

4) From Power to CO2 usage can be as simple as multiplying by the country average CO2/kWh, or as complicated as

integrating the convolution of Power Usage * instantaneous local CO2/kWh during the sampled period:

Proof of Concept
So far, I made a Python script that exports metrics from the Prometheus API and does some calculations.

The first step is extracting Job-Slots occupancy by VO (and Architecture). See examples in 1 month period:

Proof of Concept (2)
With these numbers, we can then scale the power usage and assign it proportionally to VOs.

The 2 plots below show the proportional power usage by VO over 1 month period:

VO ATLAS:

ARM: 3760.25 kWh

x86: 26086.83 kWh

VO LHCb:

ARM: 3720.07 kWh

x86: 25797.80 kWh

And these are integrated power usages (kWh) for a few sampled VOs over the same period:

VO OPS:

ARM: 2721.78 kWh

x86: 25950.92 kWh

VO CLAS12:

ARM: 0.00 kWh

x86: 25628.82 kWh

VO CMS:

ARM: 0.00 kWh

x86: 24582.94 kWh

VO DTEAM:

ARM: 0.00 kWh

x86: 25812.16 kWh

VO EUCLID:

ARM: 0.00 kWh

x86: 10602.08 kWh

VO GLUEX:

ARM: 0.00 kWh

x86: 26231.67 kWh

Issue and possible solutions
The current strategy just calculates the proportional Power Distribution: use the % resource utilization by VO to allocate total power

usage. For example: VO “ScotGrid” uses 30% of the cluster resources, so ScotGrid gets billed for 30% of the total power (active +

idle). This is an executive choice, but I am ready to hear your suggestions and criticism … for instance:

1. Idle Power Allocation

Option A: Divide idle power among all VOs (including inactive ones)

Pros: Simple and reflects the cost of having infrastructure ready for all VOs.

Cons: Inactive VOs may complain about being "billed" for resources they didn’t use.

Option B: Divide idle power among active VOs only

Pros: Aligns cost with actual resource usage.

Cons: Few active VOs at any time may bear a disproportionate share of the idle power cost, which could seem unfair.

Suggestion: Option A is better for fairness as all VOs benefit from having the cluster online.

Rationale: if you rent a car and keep it parked in the drive-way, you may save on gas but you still pay for the rent!

2. Accounting for Machine Types

Option A: Track job distribution per machine type

Pros: Accurately reflects the true energy cost per VO.

Cons: Adds complexity; might lead to disputes if a VO is often assigned to less efficient machines.

Option B: Average out hardware efficiency

Pros: Simple and less controversial. Treat the cluster as a "black box" delivering aggregated services.

Cons: Loses granularity in reporting efficiency.

Suggestion: Option B for simplicity. But we consider expanding it to include machine-specific efficiencies and PUE

(“bill” the site, which should push site level optimization?).

Conclusions & Outlook
❖ Improving on the methodology and developing an automated Analysis framework:

- energy measurement now integrated in HEP-Score

- HS23/Watt metric soon to be included in the HEP-Score DB (one stop shop for hardware rating!)

- (maybe) add the frequency dependence in the DB for better characterization of hardware?

❖ Implement a prototype for WLCG global CO2 accounting - possibly, not in isolation

- work harder on developing a robust Power Accounting strategy!

- iron out the details in collaboration with VOs & WLCG sites (idle, PUE, hardware efficiency)

- talk to experts on Power grids to attach the CO2 cost to power

❖ Keep looking at more energy efficient hardware solutions (x86, ARM, RISC-V, GPUs)

end

2xAMD64ht: Dual Socket AMD EPYC 7513 (DELL)
CPU: 2 * x86 AMD EPYC 7513 (Milano), 32C/64HT @ 2.6GHz (TDP 200W)
RAM: 512GB (16 x 32GB) DDR4 3200MT/s → 4 GB/core
HDD: 3.84TB SSD SATA Read Intensive

in-House (production)

~ 5k cores

2xAMD64ht: Dual Socket AMD EPYC 7452 (DELL)
CPU: 2 * x86 AMD EPYC 7452 (Roma), 32C/64HT @ 2.35GHz (TDP 200W)
RAM: 512GB (16 x 32GB) DDR4 3200MT/s → 4 GB/core
HDD: 3.84TB SSD SATA Read Intensive

2xIntel40ht: Dual Socket Intel XEON E5-2630 v4 (HP)
CPU: 2 * x86 Intel(R) Xeon(R) E5-2630 v4, 10C/20HT @ 2.2GHz (TDP 85W)
RAM 160GB (4 x 32GB + 4 x 8GB) DDR4 2400 MHz → 4 GB/core
HDD: 2TB disk SATA @ 7200 RPM

~ 7.5k cores

~ 1.5k cores 2*ARM80c: Dual Socket Ampere Altra Q80-30 (Ampere)
CPU: 2 * ARM Ampere Q80-30, 80C @ 3GHz (TDP 210W)
RAM: 512GB (32 x 16GB or 16 x 32GB) DDR4 3200MT/s → 3.2 GB/core
HDD: 2 * 1TB NVMe

~ 2k cores

ARM128c: Single Socket Ampere Altra Max M128-30 (SuperMicro)
CPU: ARM Ampere M128-30, 128C @ 3GHz (TDP 250W)
RAM: 512GB (8 x 64 GB) DDR4 3200MHz → 4 GB/core
HDD: 8TB NVMe ~ 2k cores

AMD96ht: Single AMD EPYC 7003 (GIGABYTE)
CPU: x86 AMD EPYC 7643, 48C/96HT @ 2.3GHz (TDP 225W)
RAM: 256GB (16 x 16GB) DDR4 3200MHz → 2.7 GB/core
HDD: 3.84TB SSD SATA

Grace144c: Dual Socket* NVidia Grace (SuperMicro)
CPU: NVidia Grace 144-Core 480GB DDR5 @ 3.4GHz (TDP 500W)
RAM: 480GB (on chip) DDR5 4237MHz → 3.3 GB/core
HDD: 1TB NVMe + 4TB NVMe

ARM80c: Single socket Ampere Altra Q80-30 (GIGABYTE)
CPU: ARM Ampere Q80-30, 80C @ 3GHz (TDP 210W)
RAM: 256GB (16 x 16GB) DDR4 3200MHz → 3.2 GB/core
HDD: 3.84TB SSD SATA

in-House (testing)

And, we also have a RISC-V test box …

Remote Testing
2*AMD256ht: Dual Socket AMD EPYC 9754 (SuperMicro)
CPU: 2 * x86 AMD EPYC 9754 (Bergamo), 128C/256HT @ 3.1GHz (TDP 360W)
RAM: 1.536TB (24 x 64GB) DDR4 3200MHz → 3 GB/core
HDD: 512GB NVMe + 3.84TB SSD

AMD128ht: Single Socket AMD EPYC 8534P (SuperMicro)
CPU: AMD EPYC 8534P (Siena), 64C/128HT @ 3.1GHz (TDP 200W)
RAM: 576GB (6 x 96GB) DDR5 3200MT/s → 4.5 GB/core
HDD: 1TB NVMe Storage

Super
Micro XMA

ARM128c: Single Socket Ampere Altra Max M128-28 (XMA)

CPU: ARM Ampere M128-28, 128C @ 2.8GHz (TDP 250W)
RAM: 512GB (8 x 64GB) DDR4 3200MHz → 4 GB/core
HDD: 1TB NVMe Storage

We have expressed our interest in testing new hardware to a few vendors, and from time to time we get

remote access to new machines. We have also gathered data from other WLCG sites (RAL).

But, our machine sample is negligible compared to what is available in the HEP-Score DB …

@ RAL

2xAMD192ht: Dual Socket AMD EPYC 9654 96-Core (…)
CPU: AMD EPYC 9654 (Genoa), 96C/184HT @ 3.7GHz (TDP 340W)
RAM: 1TB (…) → 5GB/core
HDD: …

ARM192c: Single Socket AmpereOne A192-32x (SuperMicro)

CPU: ARM AmpereOne A192-32x, 192C @ 3.2GHz (TDP 350W)
RAM: 1Tb (…) → 5 GB/core
HDD: 1TB NVMe Storage

Super
Micro

What Watt
We wish to extract an accurate Figure of Merit (FoM) of power usage for a standard HEP workload from

smaller HEP-Score containerized jobs, which is easy to implement and consistent across hardware.

We could fit this

peak, but … the

distribution is not

gaussian and

varies across

hardware.

2*Milano

<75-95%> Blue line sits nicely in the plateau !

By arranging the data in power order we can perform an upper quartile average, but discard the top 5% of

data to remove isolated peaks. This we call 75-95% quantile average.

What Watt (reprise)
The HEPiX Benchmark Working Group has also studied various statistical proxies for power usage.

In particular, see the presentation by Kacper Kamil Kozik: https://indico.cern.ch/event/1433496/

The machines are

the same from the

previous slide, but

labels are slightly

different.

The “average

power” is estimated

by using different

statistical proxies

(metrics), see

legend.

https://indico.cern.ch/event/1433496/

Nickname Machine CPU Arch HT Threads Governor Max Freq. (GHz)HS23/W <75-95%> (W)Watt/core

2*Xeon 2xIntel20ht 2 * Intel XEON 10-Core CPU E5-2630 v4 2*x86_64 on 40 conservative 2.2 1.822 211.7 5.3

Milano AMD96ht AMD EPYC 7643 48-Core Processor x86_64 on 96 conservative 2.3 3.525 384.7 4.0

2*Milano+GPU 2*AMD48ht_gpu 2 * AMD EPYC 7443 24-Core Processor + 2* NVIDIA A100 PCIe 80GB 2*x86_64 on 96 conservative 4.0 2.318 730.1 7.6

2*Roma 2xAMD64ht 2 * AMD EPYC 7452 32-Core Processor 2*x86_64 on 128 conservative 3.3 4.092 446.3 3.5

2*Milano 2xAMD64ht_m 2 * AMD EPYC 7513 32-Core Processor 2*x86_64 on 128 conservative 2.6 3.876 486.9 3.8

2*Bergamo 2xAMD256ht 2 * AMD EPYC 9754 128-Core Processor 2*x86_64 on 512 conservative 3.1 5.670 1,322.2 2.6

2*Genoa 2xAMD192ht_cons2 * AMD EPYC 9654 96-Core Processor 2*x86_64 on 384 conservative 3.7 4.991 1389 3.6

Siena AMD128ht AMD EPYC 8534P 64-Core Processor x86_64 on 128 conservative 3.1 5.659 324.9 2.5

Q80 ARM80c Ampere Altra Q80-30 aarch64 // 80 conservative 3.0 4.881 309.9 3.9

Max28 ARM128c_2.8 Ampere Altra Max M128-28 aarch64 // 128 conservative 2.8 5.911 349.9 2.7

Max30 ARM128c Ampere Altra Max M128-30 aarch64 // 128 conservative 3.0 5.002 424.1 3.3

Grace NVidia144c NVidia Grace 144-Core 480GB DDR5 2*aarch64 // 144 conservative 3.4 5.035 835.2 5.8

AmperOne ARM192c AmperOne 192-Core aarch64 // 192 conservative 3.2 5.673 570.1 3.0

2*Q80 2xARM80c 2 * Ampere Altra Q80-30 2*aarch64 // 160 conservative 3.0 4.681 538.5 3.4

more HS23/Watt
Using our FoM, we measure performance per watt as: HS23 / Power<75-95%>

GPU not used

ScotGrid Tier2 Cluster Overview

wn-x86-001

STARTD

CVMFS

HTC-manager

COLLECTOR

NEGOTIATOR

WAN

Scot-Squid

SQUID

Scot-Nat

NAT

storage

(CEPH)

H
T

C
O

N
D

O
R

VPN

AuthN / AuthZ

Traffic

Job requests

wn-ARM-001

STARTD

CVMFS

Arc-ce04

SCHEDD

ARC-CE
Arc-ce03

SCHEDD

ARC-CE
Arc-ce02

SCHEDD

ARC-CE
Arc-ce01

SCHEDD

ARC-CE Tokens, VOMS, ...

VM-Hypervisor

Milk-V Pioneer

Preliminary look at RISC-V

Our results show that, at present, the RISC-V PC performs

slightly better than a 2017 desktop, but the hardware is not

mature enough to compete with server grade x86 and ARM

CPUs (and there are currently no RISC-V server solutions).

With growing interest for the RISC-V architecture (e.g., EPI

https://www.european-processor-initiative.eu/), the landscape

can rapidly evolve, and we want to be prepared!

RISC-V is an open standard Instruction Set Architecture (ISA) based on established Reduced

Instruction Set Computing principles, and offered under royalty-free open-source license.

Support for RISC-V was added to the Linux kernel in 2022, the 64-bit variant (riscv64) in 2023.

We recently acquired a fully integrated RISC-V desktop PC running Fedora 38 (for ~2.5k £) …

We ran a Geant4 full detector simulation as benchmark, and

compared the RISC-V performance with 3 types of hardware

(desktop i5 PC, AMD EPYC and ARM Ampere Q80 servers).

We evaluated the performance as Events/Second and

Events/Sec/Watt. (≈ Events/Energy).

https://www.european-processor-initiative.eu/

