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THEN ... TAKEOFF

Research Phase

Application-Ready
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COMPUTING COST A ,1

Training compute (FLOPs) of milestone Machine Learning systems over time
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Training compute (FLOPs) of milestone Machine Learning systems over time
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METRICS ARE
AVAILABLE

Al is getting more expen
in terms of resources and
carbon footprint.

But what does it meadn
exactly in terms of
sustainability?

What about Al in/HEP?

Power Hungry Processing: Watts Driving the Cost of
Al Deployment?
arXiv:2311.16863v
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DEEP LEARNING IS
IN PRODUCTION |
RUN3

Machine Learning since LEP yegars
Mostly for classification &
regression

Since early 2000s a multiplicity of

applications through Deep
Learning...
Many are in producti
3!

n for Run

Today we also are interested in
LLMs in all their shapes and forms
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WHAT IS SPECIAL
ABOUT DL IN HEP?

| Typical HEP DNN
*ption-vB

‘ ResNet-101
|[ResNet-50 VGG-16 VGG-19

In general highly optimized models @ rester3
| aResNet—18

GoogleNet

Out of the box models rarely worked
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The broad range of applications leads to
different computing requirements

35M 65M 95M 125M - 155M

BN-AlexNet
AlexNet

Ex. ML in Real Time environment 15 20 25 30 35 40

. Operations [G-Ops]
Constraints on Latency

(Canziani et al., 2016)
Constraints on Model Complexity

Constraints on the qua”ty of data available This plot (and/or similar) have been shown for years by many people!

12.12.2024 8 \ \




ENERGY CONSUMPTION IN Al LIFECYCLE

Al energy footprint needs to be assessed in the
different steps of ML lifecycle

* Including cost for data gathering, storage and
pre-processing ’ Train Model s
What about comparison to traditional techniques Al ("
replaces? A
P N
Package Model

Ex. Weather forecasting
1. Numerical models require O(hours) for one 10 days forecast
2. EEMWF model takes 2.5 min on a single GPU Deploy Model Validate Model

Training takes 1 week using 64 A100 GPU
.. with 50 ensemble models (https://arxiv.org/pdf/2406.01465)

3. Pangu-Weather (SoA ) reports 11% better forecasting accuracy while

being 10000x faster
(https://arxiv.org/abs/2211.02556)



BACK IN 2021: FASTER THEN
MONTE CARLO (...ON CPU!)

Post training quantization (INT 8):

msecs/Batch
Lower is Better)

CERN 3D-GANS Inference FP32 & INT8 (DL Boost) Operation Times per Batch
on 1S Intel(R) Xeon(R) Scalable Processor 8280
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F. Rehm, ICPRAM2021
in collaboration with Intel

FP32: 3DGAN is 38000x faster than Monte Carlo
INT8: quantized 3DGAN is 68000x faster than
Monte Carlo
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Time per epoch (s=cords)

Intel Xeons
BACK IN 2021: OPTIM ED TRAIN'NG Time per epoch
Training 3DGAN (3M parameters) takes ~7 days 1000
on a GPU °° | |
Distributed training is essential a N

Keep physics under control

Optimise costs

Total training time: 3 hours on 256
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PATH TOWARD ENERGY EFFICIENT Al

STRATEGIC

Optimise use case
definition

Optimise
integration with
existing software

Estimate classical
tools replacement
savings

Actively
contribute to
existing green
intiatives beyond
HEP

HARDWARE

Improve usage
efficiency of
available h/w

Al models are based
on a few
frameworks:
optimising them
impacts all use
cases

Introduce new h/w
technologies
(dedicated
accelerators,
Quantum
Computing...)

DEPLOYMENT

Optimise
across the Al
lifecycle

Optimise
workloads
definition,
scheduling, ...

Data centers
choice:
centralisation
allows better
resource
managament

Al

ARCHITECTURES

Improved/
compactified
data
representation
and
computational
graphs

Foundation
models

New approaches
to training

Neural
Architecture
Search (NAS)



OPTIMISING DEPLOYMENT

NB: There is ongoing work along these
lines at CERN by R. Rocha & his team

Adoption of cloud-based solutions that offer better energy
efficiency through optimized resgurce management.

M Cost Reserved
. 310 mm Cost Preemptible
Layers of the solutions [5] CLOUD NATIVE
— SUSTAINABILITY ——
25 -
When considering solutions complimentary to the three foundations of sustainable cloud systems, we
can divide solution considerations into three general areas: § .
Do
1. Which data center to use, if there are multiple options available. E
2. Where to place the workload once a data center is chosen. : 15 |
3. How to manage the resources on the node allocated for a workload to run on. ;
(=]
L=
All of these elements can be investigated further individually. 10 4
AREA GOAL EFFORTS o5 4
Multi Intelligently choosing which data center to schedule on according Cluster
Data to environmental factors such as whether the region is powered by Management

Centers renewables, the region’s Marginal Emissions Rate, Power Usage
Effectiveness (PUE), time of day, etc.
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Within Scheduling effectively according to workload, availability, and Power
Data  urgency of worklioad Management, Our old study focused on cost .. Not a
Center K8S .

Scheduler proxy for energy consumption!

Plugin

o o o ) ) Cardoso, Renato, et al. "Accelerating GAN training using highly

Within F)pt|m|2|ng resources to handle workload sp:?eac‘|f!cat|ons (which may Node Turung, parallel hardware on public cloud.” EPJ Web of Conferences. Vol.
a node include performance parameters) while minimizing resource Pod Scaling

GPU-128
TPU wZ-8
PU w2-32
TPU w3-8
PU w3-32

_ 251. EDP Sciences, 2021.
consumptlon



INTRODUCING A DVAN CED New technologies can bring orders of
HARDWARE TECHNOLOGIES magnitude improvements!

QC, Neuromorphic, Edge ...

Quantum computing accelerates the

New hardware is more efficient

training of a classical RL agent
(but we need to make sure Al

platforms make the best out of it!) It could be used todav!
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M. Schenk, et al., Hybrid actor-critic algorithm for quantum
reinforcement learning at CERN beam lines. arXiv:2209.11044




A NEW APPROACH/,/TO Al AND NEW TRAINING
STRATEGIES

Omnijet-a transfer learning Anna Hallin et al.
arxiv: 2403.05618
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Table 1: Comparison of accuracy and energy consumption achieved with stan
g Instruction dard training (ST) and our energy-aware method (EAT).
N Following . -~
ei' L GTSRB CIFAR-10 CelebA

ResNetl8 VGG16 ResNetl8 VGG16 ResNetl® VGG16
ST FEAT ST EAT ST EAT ST EAT ST EAT ST EAT

o _ Accuracy  0.91 0.93 0.90 0.89 0.92 0.90 0.91 0.88 0.76 0.78 0.77 0.78
Improved training techniques E. ratio 0.76 0.55 0.69 0.63 0.73 0.61 0.67 0.53 0.68 0.63 0.63 0.54

https://arxiv.org/pdf/2307.00368 ! E.decrease’% - 27.63 - 8.69 - 16.43 - 20.89 - 7.35 - 14.28 !




SUSTAINABLE Al THROUGH A MULTI-TIERED

APPROACH

Al is quickly becoming a major workload for HEP

Al Energy sustainability is 0 multi-faceted

problem that deserves an initiative on its own

HEP expertise should be leveraged to

generate impact in/the broader Al field

We should in any case strive towards building
collaboration between Al researchers,
environmental scjentists, and policymakers to

address energy sustainability.

Standardized metrics would be a place to start

verage datacenter and energy mix in 2017 = 1.0

Training Transformer on P100 in a

1000

100

HOW DIFFERENT ASPECTS
CONTRIBUTE TO IMPROVEMENT

Improvements in 2019 @ Improvements in 2021

Model=Primer Machine=TPUv4  Mechanization=Google DC Map=0Oklahoma

Patterson, David, et al. "The Carbon Footprint of Machine Learning Training Will
Plateau, Then Shrink." (2022).
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’ Sofia Vallecorsa

THANK YOU

Sofia.Vallecorsa@cern.ch
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