

The HiMB Project at PSI

High Intensity Muon Beam: Magnets in a high radiation environment

A. L. Gabard RADSUM, 15 January 2025

Contents

- The Paul Scherrer Institute
- The HIPA Accelerator Complex and the HiMB Project
- Radiation Hard Magnets at PSI
- The HiMB Capture Solenoids
- The Energy Aspect
- The SMILE Initiative and its Next Steps
- Conclusion

PSI: The Paul Scherrer Institute

Biggest research institute in Switzerland 🙂

PSI

2100 employees- member of the ETH domain

- R&D on: Matter and Materials, Energy, Environment, Human Health, Accelerator Technologies & Instruments
- Education and technology transfer

HIPA:

High

Proton

The HiMB project: High Intensity Muon Beam

Goal of project HIMB: Replace target «M» with new design and build new beamlines

Power increase from 120 kW to 650 kW

« Magnet Design for the High-Intensity Muon Beams Project /HIMB) at PSI's Accelerator Complex HIPA», R.Riccioli et al., IEEE Transactions on Applied Superconductivity. 2024; 34(5): 4004305 (5 pp.).

New Target Region

- seven radiation hard solenoids in vacuum
- two radiation hard dipoles

Mineral Insulated Conductors (MIC) for radiation hard magnets

- Avoid organic materials
- Metals, ceramics only
- Indirect cooling only

MIC: Copper + MgO

- Inorganic
- Hygroscopic
- Fragile
- Prone to short-to-ground

« Radiation hard magnets at the Paul Scherrer Institute », A. Gabard et al., Proceedings of IPAC2012

Radiation damage on Epoxy

Copper corrosion

Copper oxide obstructs cooling channels

Capture Solenoids

Max. current 650A Three coil packages First coil at 250 mm from target Power consumption in operation 250 kW

Radiation load on Capture Solenoid

400

200

-200

-400

30

20 -

10 -

0

-10

-20

-30

10

-400

-200

0

z [mm]

200

PSI Center for Accelerator Science and Engineering

400

x [mm]

y [mm]

 10^{4}

Hotspot: 10 MGy per day at 3 mA operation

Typical max. radiation load for Epoxy = 10 MGy

 \rightarrow Conventional magnet definitely not possible

15.01.2025

PSI

Heat load on capture solenoid

Mirror plate 3.00 k							
1.82	kW						
0.49	kW						
0.25	k₩						
0.31	k₩						
0.24	kW						
0.20	k₩						
0.16	k₩						
0.12	кW						
0.10	кW						
0.08	kW						
0.07	кW						
6.84	kW						
	3.00 1.82 0.49 0.25 0.31 0.24 0.20 0.16 0.12 0.10 0.08 0.07 						

R.Riccioli/PSI

Energy consumption of the HIPA accelerator

Magnet consumption: 26% of total consumption

HiMB power increase: 2.6 MW → 3.1 MW (20%)

SMILE: mid-term initiative (min. 4 years)

Goals: Sustainable energy management for the infrastructure of PSI, with more efficient and improved performance of magnets

Three work packages : DC and AC superconducting magnets Advanced cryogenics (Pulsating Heat Pipes)

Long term goal: replace resistive magnets in HIPA

~280 copper coil resistive magnets

~70 magnets with Mineral Insulated Cables (MIC) (highly radiative environment)

Conclusion

- The HiMB project promises exciting new experiments but increases energy consumption
- There is a lot of potential for energy savings over the whole accelerator
- Radiation is an important topic and influences the choice of technology
- The SMILE initiative was launched to adress these topics
- Complementary presentation: Ciro Calzolaio, Friday at 2 pm

Thank you

LTS Solution: Pilot

Max. field 0.55 T Power at max. field 65 kW

Max. field 1 T Power at max. field 7.5 kW

HTS Solution: Investigate

C. Sattler, Anlagenlayouts und Installationen

19

Goal: build a test magnet, place it inside the cyclotron bunker and irradiate it for one operational period (4000 hrs) in 2026

lookout

Presentation of Ciro Calzolaio: Efficient Magnet Designs and Radiation effects for PSI Friday, 2:00 pm

Long term goal: replace resistive magnets in HIPA

~280 copper coil resistive magnets

~70 magnets with Mineral Insulated Cables (MIC) (highly radiative environment)

AHC		АНС		AHO AHM, AHN		АНВ		AHD1, AHD2		
	Power	128 kW	Power	145 kW	Power	67 kW	Power	189 kW	Power	32 / 74 kW
	Field	1.564 T	Field	1.5 T	Field	1.5 T	Field	1.8 T	Field	1.2 / 1.15 T
	Integral	2.8 Tm	Integral	4.5 Tm	Integral	3.75 Tm	Integral	2.9 Tm	Integral	2.2 / 2.3 Tm
	Size	2x1.5x0.8 m	Size	2.9x2.6x1.5 m	Size	2x1.5x1.2 m	Size	1x0.7x0.7 m	Size	2x1.2x1.5 m
	Weight	12.5 t	Weight	51 t	Weight	22 t	Weight	4.2 t	Weight	19 t

Power only, full slide in annex

Radiation hard (MIC coils)

AHL					
Power	61 kW				
Field	1.12 T				
Integral	2.5 Tm				
Size	2.3x2.3x1.5 m				
Weight	48 t				

