

Efficient Magnet Designs and Radiation effects for PSI

<u>Ciro Calzolaio</u>, Michal Duda, Roman Farruggia, Garcia Rodrigues Henrique, Stephane Sanfilippo

RADSUM, 17 January 2025

Contents

- The HIPA Accelerator and the radiation hard magnets at PSI.
- Possible candidate resistive magnets to be replaced by superconducting ones.
- Superconducting magnets for the HIPA accelerator
 - The Pilot Nb-Ti solenoid.
 - Preliminary measurements at PSI.
 - The HTS demonstrator.
- Conclusions

New Target Region

Long term goal: replace resistive magnets in HIPA

~280 copper coil resistive magnets

~70 magnets with Mineral Insulated Cables (MIC) (highly radiative environment)

Transport solenoid:

resistive vs superconducting at a glance

Resistive magnet

- Cu coils mass: 1300 kg
- $J_e = 5 \text{ A/mm}^2$
- Peak field: 0.55 T
- Peak power consumption: 65 kW
- Average power consumption: ~20 kW

Superconducting magnet

- Cold mass (coil + yoke): ~ 110 kg
- J_e=150 A/mm²

- Peak field: ≥1.0 T
- Peak power consumption: 8.6 kW
- Average power consumption: 7.6 kW
 •6.6 kW from cryocoolers → it could drop to 3.6 kW at lower radiation
 - environments
 - •0.5 kW from the turbopump
 - •0.5 kW from losses in the cable + Cu leads

Pilot Solenoid for IMPACT

	Resistive	Superconducting
Average Power [kW]	20	7.6
Working		
hours/year	4000	4000
n. years	20	20
Tot. energy [MWh]	1600	608
Energy saving [MWh] Energy price	0	992
[CHF/MWh]	200	200
Tot. electricity price [kCHF]	320	121.6
Runnig cost saving [kCHF]	0	198.4
Yearly carbon Intensity [gCO2eq/kWh]	40	40
CO2 equivalent [tons]	64	24.32
CO2 equivalent saving [tons]	0	39.68
Capital cost [kCHF]	225	350
Price break even [years]		12.60

Solenoid main parameters

Solenoid parameters	Cu	SC
Inner Diameter [mm]	550	600
Total Length [mm]	465	465
Peak field [T]	0.55	1
Field integral [Tm]	0.3	0.3
Working hours / year	4000	4000
Duration of operation	>20 years	>20 years

Pilot Solenoid for IMPACT

t 9.33			
1.2			
1.6			
0.3			
?			
12.43			
2	2nd	stage	
P [W]	3rd solenoid	P	W]
0.04	HTS leads	0.0	04
0.12	Structural support	0.1	12
0.13	Thermal radiation	0.1	13
0.15	Sensor wires	0.1	15
0.150	neutron dose	0.0	012
0.590	Tot.	0.4	452
	t 9.33 1.2 1.6 0.3 ? 12.43 P [W] 0.04 0.12 0.13 0.15 0.15 0.150 0.590	t 9.33 1.2 1.6 0.3 ? 12.43 2nd P [W] 3rd solenoid 0.04 HTS leads 0.12 Structural support 0.13 Thermal radiation 0.15 Sensor wires 0.150 neutron dose 0.590 Tot.	t 9.33 1.2 1.6 1.6 0.3 ? 12.43 P [W] 3rd solenoid 0.12 Structural support 0.13 Thermal radiation 0.15 Sensor wires 0.150 neutron dose 0.590 Tot.

PSI

Pilot Solenoid for IMPACT

HTS demonstrator

Demonstrator Magnet for high radiation environment

Main Goal: Gain experience regarding the operation of superconducting magnets in a high radiation environment

- 1. Design and build a superconducting magnet
- 2. Place it inside a high radiation environment (i.e. accelerator enclosure)
- 3. Measure the operational properties of the magnet during operation ($I_c \& T_c$)
- 4. Measure the radiation level during operation
- 5. → Combine this information and draw conclusions regarding the life cycle of a SC magnet in a high radiation environment

ightarrow Collaboration with Polytech Turin for radiation assessment

HTS superconducting magnets

Advantages

- Increased performance
- Thermal stability (wrt LTS) Large temperature margin (including beam deposited energy)
- Compact design
- Saving electric consumption
- Reduced cost for power supply
- ➤ T_{op}~20-30 K

Drawbacks

- > Higher capital cost
- > Cryogenics
- Quench detection system
- > AC losses in time varying field

Radiation damages

- Limits for superconductor degradation?
- No organic insulation
 - non insulated coils or
 - steel insulated coils

Test station for conduction cooled magnets

- Ciro Calzolaio (PSI)
- Michal Duda (PSI)
- Garcia Rodrigues Henrique (PSI)
- Martina Casciello (Politecnico di Torino)

- Ciro Calzolaio (PSI)
- Michal Duda (PSI)
- Garcia Rodrigues Henrique (PSI)
- Martina Casciello (Politecnico di Torino)

- Ciro Calzolaio (PSI)
- Michal Duda (PSI) ٠
- Garcia Rodrigues Henrique (PSI) ٠
- Martina Casciello (Politecnico di Torino) ٠

T [K]

- Garcia Rodrigues Henrique (PSI)
- Martina Casciello (Politecnico di Torino)

HTS Demonstrator

Neutron spectrum measured but we are still waiting for the results...

Goal: build a test magnet, place it inside the cyclotron bunker and irradiate it for one operational period (4000 hrs) in 2026

Superconducting magnets for HIMB

PSI

•

Conclusion

- The total power consumption of the HIMB magnets is 3.1 MW (20% more than current magnets).
- Superconducting magnets could both save energy and improve machine performance.
- We plan to build
 - a Nb-Ti pilot solenoid for low-radiation regions and
 - A ReBCO demonstrator to explore the HTS technology for higher radiation environments.
- The SMILE (Superconducting Magnets to Improve Large research facilities Efficiency) initiative was launched to address these topics.
- The goal is to adopt superconducting materials in PSI's accelerator-driven research infrastructures to
 - lower the power consumption and
 - to increase the performance.

Thank you

Thank you

LTS Solution: Pilot

Max. field 0.55 T Power at max. field 65 kW

Max. field 1 T Power at max. field ?? kW

Long term goal: replace resistive magnets in HIPA

~280 copper coil resistive magnets

~70 magnets with Mineral Insulated Cables (MIC) (highly radiative environment)

Д	нс	ļ	НО	AHM	1, AHN	A	НВ	AHD1	., AHD2
Power	128 kW	Power	145 kW	Power	67 kW	Power	189 kW	Power	32 / 74 kW
Field	1.564 T	Field	1.5 T	Field	1.5 T	Field	1.8 T	Field	1.2 / 1.15 T
Integral	2.8 Tm	Integral	4.5 Tm	Integral	3.75 Tm	Integral	2.9 Tm	Integral	2.2 / 2.3 Tm
Size	2x1.5x0.8 m	Size	2.9x2.6x1.5 m	Size	2x1.5x1.2 m	Size	1x0.7x0.7 m	Size	2x1.2x1.5 m
Weight	12.5 t	Weight	51 t	Weight	22 t	Weight	4.2 t	Weight	19 t

Radiation hard (MIC coils)

AHL				
Power	61 kW			
Field	1.12 T			
Integral	2.5 Tm			
Size	2.3x2.3x1.5 m			
Weight	48 t			

SMILE: mid-term initiative (min. 4 years)

Goals: Sustainable energy management for the infrastructure of PSI, with more efficient and improved performance of magnets

Three work packages : DC and AC superconducting magnets Advanced cryogenics (Pulsating Heat Pipes)

HiMB: MuH2 beamline – radiation levels

d, µSv/h 1.000E-07 1.000E-08 1.000E-09 1.000E-10 1.000E-11 1.000E-12 1.000E-13 1.000E-14 1.000E-15 1.000E-16

Environmental Impact : CO₂ Emission figures

*Sources: Hartikainen et al. "A Comparative Life-Cycle Assessment Between NbTi and Copper Magnets"; IEEE Transactions on Applied Superconductivity (Volume: 14, Issue: 2, June 2004)

*A. Buchholz, "Prospective Life Cycle Assessment of High-Temperature Superconductors for Future Grid Applications". Thesis , KIT (2022)