

European Superconducting Ion Gantry

MILANO 1863

Explorative energy deposition studies in the superconducting dipole magnet of the carbon ion gantry for CNAO

G. Tosetti – A. Mereghetti – M. G. Pullia

Introduction and overview of Gantry design

Energy deposition:

- in homogeneous material
- in straight and curved magnet geometry

Conclusions and Outlooks

Introduction and overview of Gantry design

Energy deposition:

- in homogeneous material
- in straight and curved magnet geometry

Conclusions and Outlooks

Introduction: CNAO

The National Center for Oncological Hadrontheray (CNAO) is a hadrontherapy center located in Pavia, Italy. In the center, proton and carbon-ion beams are used to treat radio-resistant tumors. Beams are accelerated by a synchrotron.

HITRIplus and EuroSIG projects: a Carbon– ion gantry is being designed for CNAO, based on superconducting magnet technology.

Introduction: hadrontherapy

Hadrontherapy is an advanced cancer treatment method.

It achieves precisely the targeting and killing of tumor cells while minimizing damage to surrounding healthy tissues, thanks to a range of particle energy.

C-ions		Protons		
62	228	115	400	
MeV	MeV	MeV/u	MeV/u	
30	320	30	270	
mm	mm	mm	mm	

Range of particle in water (extreme beam energies treatment available at CNAO)

Introduction: overview of the gantry design

The **conceptual design** features scanning magnets positioned downstream of the final bending section, with superconducting dipole magnets generating a 4 T magnetic field.

Some technical aspects are still under study, as the optimal indirect cooling scheme and the configuration of the beam pipe.

Introduction: overview of the SIG demonstrator design

The development of superconducting magnet technology is a significant challenge. Nowadays, **INFN LASA** is assembling a **cos-theta dipole** with:

- 4 T central field
- 80 mm aperture
- curvature radius of 1.65 m
- angular sector of 30°
- Field ramp rate 0.15-0.4 T/s

Current [A]	2770	
Operetional temperature[K]	5	
Superconductor	Niobium-Titanium	
Cable type	Rutherford	
Twist pitch [mm]	66	

Introduction and overview of Gantry design

Energy deposition:

- in homogeneous material
- in straight and curved magnet geometry

Conclusions and Outlooks

Energy deposition in homogeneous materials I

Full Beam impact on a cylindrical target made of an **homogeneus material**:

- each material composing the dipole was considered;
- with extreme beam energies treatment available at CNAO (beams of C-ions at 400 and 115 MeV/u and proton at 230 and 62 MeV).
- Monochromatic Gaussian beam.

The energy deposition is estimated by means of **Monte Carlo simulations**, using the **FLUKA** code. The thermodinamic of the quench is not considered (**adiabatic assumption**).

Aim: very conservative assessment

Scoring mesh characteristics:

- Cylindrical mesh;
- Longitudinal step: 50 μm ;
- Radial step: 300 μm;
- Only one azimuthal angle.

Energy deposition in homogeneous materials II

C-ions at 115 MeV/u

40.00 0.16 Copper Copper Peak energy deposition [GeV/cm³ per primary] Peak energy deposition [GeV/cm³ per primary] Stainless steel Stainless steel 35.00 0.14 Iron Iron Strand Strand 30.00 0.12 Niobium-Titanium Niobium-Titanium Cable Cable 25.00 0.10 Aluminum Aluminum G10 G10 20.00 0.08 15.00 0.06 10.00 0.045.00 0.02 0.00 0.00 1.5 15 0 0.5 2 2.5 0 5 10 20 25 Depth [cm] Depth [cm]

Longitudinal profiles of peak energy deposition in a thick target of homogeneous material for protons at maximum and C-ions at minimum energy.

CNA

6/15

Protons at 230 MeV

Energy deposition in homogeneous materials III

Assuming a nominal full beam extraction

- 4 E8 C-ions extracted in 1s;
- 1 E10 protons extracted in 1s;

Material	C-ions		Protons	
	115 MeV/u	400 MeV/u	62 MeV	230 MeV
Copper	2560	685	1952	224
Strand	2368	602	1632	166
Nb-Ti	1984	480	1344	104
Cable	1768	339	1184	91

Maximum values of energy deposition before quenching, given in mJ/cm³.

Considering a **conservative quench limit** of energy density (**10** mJ/cm³ strand enthalpy at max current) is exceeded in all the simulated cases.

Energy deposition in homogeneous materials IV

Fit:

Max energy deposition $= \frac{A}{\pi \sigma^2 - b} + c$

Beam sizes as of gantry optics presently considered in the context of the HITRIPlus project:

> σ_{min} = 0.55 mm σ_{max} = 2.56 mm

Energy deposition in magnet geometry I

The beam hits the dipole at different angles on the horizontal mid-plane. Two geometries are implemented: **straight** and curved.

Simulation of **C-ions beam at 115 MeV/u**, carried **without magnetic field**. Cases with the **vacuum chamber** (2 mm of Stainless Steel).

Aim: endep dependency on impact angle

Scoring mesh characteristics:

- Longitudinal: 50 μm;
- Radial: 230 μm;

9/15

- Azimuthal: bear mid thick edge (480 μm).

Energy deposition in magnet geometry II

Angle at which **the primary particles** are **fully stopped** inside a single layer of each composing magnet material with a given thickness.

Material	Thickness	C-ions		Protons	
	mm	115 MeV/u	400 MeV/u	62 MeV	230 MeV
Strand	9.1	-	176	-	141
Stainless steel	2	340	42	318	33

Angles are expressed in mrad.

Energy deposition in magnet geometry: straight magnet

The quench occurs at higher impact angles or probably does not occur when the pipe is considered.

Energy deposition in magnet geometry: curved magnet

The beam impacts on the left and right side are separately evaluated (cases without the vacuum chamber).

Energy deposition in magnet geometry: comparison

Max energy deposition = $\frac{A}{\frac{\pi\sigma^2}{\sin\theta} - b} + c$

Simulation results for the curved geometry are consistent with those obtained for the straight geometry.

Introduction and overview of Gantry design

Energy deposition:

- in homogeneous material
- in straight and curved magnet geometry

Conclusions and Outlooks

Conclusions and Outlooks I

Motivations for the studies

- Can CNAO beams losses induce quenching?
- Should mitigation be considered (protection devices or reduce the beam intensity)?

Montecarlo simulation with FLUKA

- not based on operational beam losses at CNAO.
- Adiabatic assumption.
- no magnetic field.

Homogeneous material

- The particles at minimum energy present the most concerning results.
- Spot size is comparable to the beam sizes of the gantry optics studies.
- The spot size is a ruling factor.

Conclusions and Outlooks II

Considering the SIG magnet cross section

- The inclusion of a vacuum chamber has led to a significant improvement in the results.
- Impact angle is a ruling factor.

Outlooks

- Studies on more realistic upstream line impact condition.
- Technical design of a vacuum chamber.
- Simulation of the entire gantry geometry.

European Superconducting Ion Gantry

Thanks for your attention!

European Superconducting Ion Gantry

MILANO 1863

Explorative energy deposition studies in the superconducting dipole magnet of the carbon ion gantry for CNAO BACKUP

G. Tosetti – A. Mereghetti – M. G. Pullia

Energy deposition in magnet geometry : Backup

Protons at 62 MeV

C-ions at 400 MeV/u

12.00 1.40 Copper Copper Peak energy deposition [GeV/cm³ per primary] Peak energy deposition [GeV/cm³ per primary] Stainless steel Stainless Steel 1.20 10.00 Iron Iron Strand Strand Niobium-Titanium 1.00 Niobium-Titanium 8.00 Cable Cable Aluminum Aluminum 0.80 G10 G10 6.00 0.60 4.00 0.40 2.00 0.20 0.00 0.00 0 10 12 16 18 20 0 0.5 1.5 2 2.5 2 8 14 1 6 Depth [cm] Depth [cm]

Longitudinal profiles of peak energy deposition in a thick target of homogeneous material for protons minimum and C-ions at maximum energy CNAC

Energy deposition in magnet geometry : Backup

Protons at 230 MeV

C-ions at 400 MeV/u

Longitudinal profiles of peak energy deposition in a thick target of homogeneous material for protons and C-ions at minimum energy, with different σ on the x and y axis but same area CNAC

Energy deposition in magnet geometry: Backup

Angle such that the entire beam hits the magnet illuminating the entire length.

