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Motivation
• This talk

• RADSUM 2025

Developing a workflow

• Predicting the change of the critical current under particle radiation

Enhanced pinning versus decreased superfluid density

• Favorable increase in flux pinning („large defects“)

• Harmful suppression of  superfluid density („small defects“)

➢ Effect of scattering in conventional s-wave superconductors

➢ Pair breaking in cuprates

• Separation of the two contributions

• Pinning efficiency

Conclusions

Outline
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Developping a workflow 



Motivation

Envisaged application in a radiation environment

????

Prediction of changes in properties

Re-design 
(e.g. addition of a screen)



Motivation

Envisaged 
application 

in a radiation 
environment

Experiment 
in the known 

radiation 
environment

Change of 
properties

????: Ideal experiment

Real world: radiation environment 

• not known exactly

• not available for experiments

→ Modelling 

→ Benchmarking experiments: verifying models, providing input parameters 



Envisaged 
application in a 

radiation 
environment

Task1 Task2

….Task n
Change in critical 

current

Workflow

• Splitting into tasks

• Developing interfaces

• Defining benchmarking experiments



Interfaces

• Task i has to provide an input for Task i+1

• Parameter

• Distribution function

• …..

• Task i+1 has to accept this input

Example : Proton irradiation as a proxy for neutron irradiation

• Expects target proton fluence as input, but neutron fluence is 

specified.

→ Possible interface: displacements per atom (dpa).

• Output: e.g. change in 𝑇𝑐 but next task expects scattering rate

→ Possible interface: Relationship between 𝑇𝑐 and 𝜏−1.



Envisaged 
application in a 

radiation 
environment

Radiation 
environment

Defect structure

Flux pinning and
superfluid 

density

Change in critical 
current

Draft Workflow

• Defining tasks 

• Defining benchmarking experiments

• Defining interfaces

• This talk: Flux pinning and superfluid density



Task 1: Radiation environment

• Input: Primary radiation source.

• Output: flux of particles with their energy distributions

(including secondary particles)

• Numerical methods (yesterday).

• Experiments: not needed/possible?

On track (?)



Task 2: Defect structure

• Input: flux of particles with their energy distributions

• Output (?): 

• Scattering rate

• Size and density of pinning efficient defects

• Numerical methods: 

• Damage (dpa) calculations

• Molecular dynamic simulations

• Experiments: Benchmarking particles/energy

• XRD

• TEM

• XANES

• ….

Interface or additional task needed?



Task 3: flux pinning and superfluid density

• Input (?): 

• Scattering rate

• Size and density of pinning efficient defects

• Output: Critical current density

• Numerical methods: 

• Time dependent Ginzburg Landau theory (pinning)

• Relation between scattering rate and superfluid density.

• Experiments: Benchmarking particles/energy

• Scattering rate

• Normal state resistivity

• Hall resistivity

• Transition temperature

• Critical current



Modelling changes in Ic

Scattering



Ideal Crystal

14

Lattice atoms have to be displaced to damage the material

→ scattering of charge carriers



• Fast neutrons (En>0.1 MeV): collision cascades

• ~ 0.1 keV < En < 0.1 MeV: single displaced atoms: 

vacancies, interstitials, Frenkel pairs (mainly oxygen).

Introduced defects

15

D. Torsello et al., SuST 36 (2023) 014003



Normal state resistivity

16

neutron´s journey

Any defect breaks translational symmetry of the crystal lattice

→ scattering of charge carriers

• Decrease in mean free time 𝜏
• Increase in scattering rate 𝜏−1

• Decrease in mean free path 𝑙 = 𝑣F𝜏

• Increase in normal state resistivity 𝜌n =
𝑚𝑒𝑣F

𝑛𝑒2𝑙

𝑣F… Fermi velocity

𝑚𝑒… mass of charge carriers

𝑛… density of charge carriers

𝑒… elementary charge 



Superconductors: Ginzburg-Landau theory
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Thermodynamic behavior is determined by three parameters: 

• Transition temperature, 𝑇𝑐. 

• Magnetic penetration depth, 𝜆.

• Superconducting coherence length, 𝜉.

Other parameters can be calculated:

• Condensation energy density: 𝐸c =
𝜙0
2

16𝜋2𝜇0𝜆2𝜉2
.

• Upper critical field: 𝐵𝑐2 =
𝜙0

2𝜋𝜉2
= 2𝜅𝐵𝑐.

• Lower critical field: 𝐵𝑐1 =
𝜙0

4𝜋𝜆2
ln(

𝜆

𝜉
+ 0.5).

Relation to basic material properties:

• Magnetic penetration depth: 𝜆 =
𝑚𝑒

𝜇0𝑛s𝑒2
. 

→ Superfluid density 𝑛s ∝
𝑚𝑒

𝜆2
.

• BCS Coherence length 𝜉0 =
ℏ𝑣F

𝜋Δ
= 0.18

ℏ𝑣F

𝑘𝐵𝑇c



Scattering in conventional (d-wave) superconductors
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(Non-magnetic) Scattering is not pair breaking in isotropic conventional superconductors.

→ Transition temperature does not change.

→ Condensation energy: 𝐸c =
𝜙0
2

16𝜋2𝜇0𝜆
2𝜉2

and 𝐵𝑐 do not change.

• Gorkov-Goodman relations: 𝜅 =
𝜆

𝜉
= 𝜅0 + 2.37 ∙ 106 𝛾𝑛𝜌0 = 𝜅0 1 +

𝜉0

𝑙

→ Upper critical field increases: 𝐵𝑐2 = 𝐵𝑐2
𝜌0→0 + 2.37 ∙ 106 𝛾𝑛𝜌0 = 𝐵𝑐2

𝜌0→0 1 +
𝜉0

𝑙

→ Superconducting coherence length decreases: 𝜉 =
𝜉0

1+
𝜉0
𝑙

≈ 𝜉0𝑙

• Isotropic conventional superconductors

→ Magnetic penetration depth increases: 𝜆 =
𝑚𝑒

𝜇0𝑛s𝑒
2 = 𝜆L 1 +

𝜉0

𝑙

→ Superfluid density 𝑛s ∝
1

𝜆2
is reduced.

→ Pair breaking current density, 𝐽d =
𝜙0

3 3𝜇0𝜋𝜆
2𝜉

, decreases.



Pair breaking in cuprates

• Resistivity not easily accessible in coated 

conductors

• Disorder parameter, 𝐷: decrease of 𝑇c
(𝐷 = 𝑇c

0 − 𝑇c)

• 𝐷 ∝ 𝜏−1

• 𝐷 ∝ 𝜙 (different slope for different particles)
19

R. Unterrainer et al., SuST 37 (2024) 105008

R. J. Radtke et al., PRB 48 (1993) 653

• Scattering is pair breaking in cuprates.

• 𝑇c degrades with increasing resistivity.

𝑇 c
(K
)

𝜌0(μΩcm) ∝ 𝜏−1 Τ∝ 1 𝑙



Change in critical current density

20

R. Unterrainer et al., SuST 37 (2024) 105008

30 K, 15 T

Significantly higher radiation tolerance of Nb3Sn

Nb3Sn wires
(magnetization measurements)

REBCO
(transport measurements)

Baumgartner et al., Sci. Rep. 5 (2015) 10236

(M. Asiyaban, unpublished, 2024)

4.2 K, 6 T
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Enhanced scattering (cuprates)
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• BCS coherence length: 𝜉0 =
ℏ𝑣F

𝜋Δ
= 0.15

ℏ𝑣F

𝑘𝐵𝑇c
(d-wave) increases.

• Change (increase?) of coherence length: 𝜉 =
𝜉0

1+
𝜉0
𝑙

.

• Magnetic penetration depth increases stronger: 𝜆 =
𝑚𝑒

𝜇0𝑛s𝑒
2 = 𝜆L 1 +

𝜉0

𝑙
.

→ Superfluid density 𝑛s ∝
1

𝜆2
is stronger reduced.

→ Pair breaking current density, 𝐽d =
𝜙0

3 3𝜇0𝜋𝜆
2𝜉

, decreases.

Decrease of depairing current density with 𝐷 (𝑇c): 𝐽d 𝐷 =
𝜙0

3 3𝜇0𝜋𝜆L
2𝜉0 𝐷 1+

𝜉0 𝐷

𝑙 𝐷



Change in superfluid density (Homes’s Law)
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M. Franz et al. PRB 56 (1997) 7882

Our experimental data:

𝑇𝑐 = 𝑻𝒄
𝒖𝒏𝒊𝒓𝒓 − 𝜷𝜙, 𝜌 = 𝝆𝒖𝒏𝒊𝒓𝒓 + 𝜶𝜙

𝐾𝜌 = −
𝛼𝑇𝑐

𝑢𝑛𝑖𝑟𝑟

𝛽𝜌𝑢𝑛𝑖𝑟𝑟
=
𝑇𝑐
𝑢𝑛𝑖𝑟𝑟

𝜌𝑢𝑛𝑖𝑟𝑟

𝜕𝜌

𝜕𝑇𝑐

Suitable prediction of the change 

in superfluid density!

𝜆 = 𝜆𝐿
𝜉0

𝑙
with the BCS relation 𝜉0 = 0.18

ℏ𝑣𝑓

𝑘𝐵𝑇𝑐
, 𝜌𝑛 =

𝑚𝑒𝑣𝑓

𝑛𝑒2𝑙
and 𝜆𝐿 =

𝑚𝑒

𝜇0𝑛𝑒
2

1

𝜆2−𝜆𝐿
2 =

𝜇0𝑘𝐵

0.18ℏ

𝑇𝑐

𝜌𝑛
=

1

𝜆2
𝜇0𝑘𝐵

0.18ℏ
= 9.14 ∙ 105 Wm-1K-1

Experimental data from literature: 

𝛼 =
𝜉0
𝑙



Summary scattering
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neutron´s journey

Any defect decreases the mean free path of the charge carrier, 𝑙.

• Normal conductors

• Increase in normal state resistivity 𝜌n =
𝑚𝑒𝑣F

𝑛𝑒2𝑙

• Conventional superconductors

• Decrease of coherence length: 𝜉 =
𝜉0

1+
𝜉0
𝑙

≈ 𝜉0𝑙

• Increase of magnetic penetration depth: 𝜆 = 𝜆L 1 +
𝜉0

𝑙

→ Decrease of superfluid density ∝
1

𝜆2
.

• Most efficient: large number of small defects (dpa!). 

• Cuprate superconductors: scattering is pair breaking!

• Decrease of 𝑇𝑐 and 𝐸𝑐.

• Stronger reduction of superfluid density.

• Relevant parameter: 𝜏−1 (→ 𝜌n, 𝑇𝑐)



Modelling changes in Ic

Flux pinning



Flux pinning 
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neutron´s journey

• Condensation energy density: 𝐸c =
𝜙0
2

16𝜋2𝜇0𝜆
2𝜉2

• Energy of vortex core per meter:  𝐸core = 𝐸c 𝜋𝜉
2 =

𝜙0
2

16𝜋𝜇0𝜆2

1. Normal conducting/insulating defects (Δ𝑇𝑐-pinning)

a. Large defects: 𝑟𝐷 > 𝜉: 𝐸𝑝𝑖𝑛 ≅ 𝐸c 𝜋𝜉
22𝑟𝐷 =

𝜙0
2𝑟𝐷

8𝜋𝜇0𝜆2

b. Small defects: 𝑟𝐷 < 𝜉: 𝐸𝑝𝑖𝑛 = 𝐸c
4𝜋𝑟𝐷

3

3
=

𝜙0
2𝑟𝐷

3

12𝜋𝜇0𝜆2𝜉2

2. Tiny defects, no suppression of 𝐸c (Δ𝑙-pinning): vortex core shrinks

• Critical state: 𝐹𝑝 = 𝐹𝐿 = 𝐽𝑐 × 𝐵 , force balance.

• 𝑓𝑝𝑖𝑛 =
𝐸pin

𝜉



Pinning efficiency
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neutron´s journey

• Thermodynamic limit: depairing current density

𝐽d =
𝜙0

3𝜋 3𝜇0𝜆
2𝜉

• Energy of vortex core per meter:  𝐸core =
𝜙0
2

16𝜋𝜇0𝜆2

𝑓𝑝
max =

𝐸core

𝜉
=

𝜙0
2

16𝜋𝜇0𝜆2𝜉

• Critical state: 𝐹𝑝 = 𝐹𝐿 = 𝐽𝑐 × 𝐵

• Highest possible pinning force per vortex and unit length: cylindrical defect with 𝑟𝐷 ≥ 𝜉

• Force balance for one vortex (𝐵 ⊥ 𝐽𝑐): 𝑓𝐿 = 𝑓𝑝

𝑓𝐿 = ඵ𝐹𝐿d𝐴 =ඵ𝐽𝑐 × 𝐵d𝐴 = 𝐽𝑐𝜙0 ≤ 𝑓𝑝
max=

𝜙0
2

16𝜋𝜇0𝜆
2𝜉

• 𝐽𝑐
𝑚𝑎𝑥 =

𝑓𝑝
𝑚𝑎𝑥

𝜙0
=

𝜙0

16𝜋𝜇0𝜆
2𝜉
=

3 3

16
𝐽𝑑 ≈ 0.32𝐽𝑑

• 𝜂pin =
𝐽𝑐

𝐽𝑑
… pinning efficiency

• 𝜂pin,max ≈ 32%

• Large defects 𝑟𝐷 ≥ 𝜉 needed for a large 𝜂pin (although any defect can contribute to pinning)



Modelling changes in Ic

Resulting changes



Universal degradation
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M. Eisterer et al., arXiv:2409.01376v1

Pinning efficiency 

𝜂pin increases

Large defects?

Good dpa?

𝐽d decreases

Predictable from 

changes in 𝑇c and 

𝜌n.

Small defects?

Bad dpa?

30 K, 15 T

𝐽c = 𝜂pin𝐽d(D)

Very similar degradation behavior:

• Same tape (SP SCS09) different irradiation techniques

• Fast and thermal neutrons (U)

• Fast neutrons (S)

• 1.2 MeV protons (P)

• Different tapes (S): SP SCS09, SuN HCN, SP SCS13 (artificial pinning centers)

Τ
𝐼 𝑐

𝐼 𝑐0



Change of critical current
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M. Eisterer et al., arXiv:2409.01376v1

Separation of contributions from enhanced pinning and scattering: 𝐽c ∝ 𝜂pin𝐽d

Pinning efficiency 

𝜂pin increases

Mainly caused by 

large defects

𝐽d decreases

Resulting from 

scattering (small 

defects)30 K, 15 T

𝐼c

𝐼𝑐
0 =

𝜂pin

𝜂pin
0

𝐽d

𝐽d
0

𝐴creep

𝐴creep
0 =:

𝜂pin

𝜂pin
0 𝐹D(𝐷) 𝐹D…degradation function

Τ
𝐼 𝑐

𝐼 𝑐0
Τ

𝐼 𝑐
𝐼 𝑐0

𝐹D =
𝛼p + 1 𝑡𝑐

3

𝛼p 1 − 𝐾𝜌 1 − 𝑡c + 𝑡c

𝐸crit

𝜙0𝐵𝜈0

1
𝑛−

1
𝑛p

𝑡c =
𝑇c
𝑇c,p

𝛼p =
𝜉0,p

𝑙p



0

𝜂pin

𝜂pin
0

0

0

Degradation function - pinning contribution
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𝜂pin

𝜂pin
0 = 𝐹𝐷

−1
𝐼c

𝐼c
0

Parameters in 𝐹D

• 𝛼p =
𝜉0
0

𝑙0
(fixed to 3, weak influence)

• 𝐾𝜌 =
𝑇𝑐
0

𝜌𝑛
0

𝜕𝜌n

𝜕𝑇c
≈ −16.5

(experimental value, thin film)

• 𝑛-value, 𝑈 ∝ 𝐼𝑛

linear fit to the experimental values 

(sample dependent)

• Strong increase near 𝐷 = 0.

• Saturation at large 𝐷.

• 𝜂pin,max enough for decreasing branch.

M. Eisterer et al., arXiv:2409.01376v1

𝑛

𝑛0

30 K, 15 T

30 K, 15 T

𝐹𝐷



➢ Separating the positive and negative effects of radiation on 

superconductors paves the way for a reliable prediction of their behavior in 

radiation environments.

➢ Harmful scattering (pair breaking in cuprates)

• Tc is an efficient disorder parameter.

• Indicating a decrease in superfluid density.

• Decrease of Jc is driven by the decrease of superfluid density. 

• Enhanced flux creep

• Scattering rate as the input parameter.

➢ Increase of pinning mainly by large defects. (Size and density as input)

➢ Change of pinning may be predicted by TDGL, and or by a few 

benchmarking experiments for estimating ηpin,max.

Conclusions
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Envisaged 
application in a 

radiation 
environment

Radiation 
environment

Defect structure

Flux pinning and
superfluid 

density

Change in critical 
current

Draft Workflow

• What do you need as an input?   (𝐼𝑐,𝑝, 𝑛𝑝, 𝜏
−1, not dpa)

• What can you offer as the output? (𝐼𝑐
𝜂pin
0

𝜂pin
)


