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REBCO must survive radiation damage in fusion devices

20 K, 20 T
REBCO magnet

> 100,000,000 K 
deuterium-tritium plasma
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REBCO must survive radiation damage in fusion devices

D + T = 4He (3.5 MeV) + n (14.1 MeV)

High energy neutrons reach magnet
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REBCO must survive radiation damage in fusion devices

D + T = 4He (3.5 MeV) + n (14.1 MeV)

High energy neutrons reach magnet

…and damage REBCO

● at 20 K
● at 20 T
● while transport 

current is running
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REBCO must survive radiation damage in fusion devices

...which limits the life of a fusion power 

plant

by eventually decreasing:

● critical currents: ↧ I
op

 < I
c

● achievable field: ↧ B ∝ I
op

 

● power output:   ↧↧↧↧ P ∝ B4

Magnet system is most expensive 
(>>$100M) part of fusion device and a 
lifetime component

Degradation behaviour has to be 
understood to develop long-lasting and 
economically viable fusion power plants!

D + T = 4He (3.5 MeV) + n (14.1 MeV)

High energy neutrons reach magnet

…and damage REBCO

● at 20 K
● at 20 T
● while transport 

current is running
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REBCO must survive radiation damage in fusion devices
...which limits the life of a fusion power 

plant

by eventually decreasing:

● critical currents: ↧ I
op

 < I
c

● achievable field: ↧ B ∝ I
op

 

● power output:   ↧↧↧↧ P ∝ B4

Magnet system is most expensive 
(>>$100M) part of fusion device and a 
lifetime component

Degradation behaviour has to be 
understood to develop long-lasting and 
economically viable fusion power plants!

D + T = 4He (3.5 MeV) + n (14.1 MeV)

High energy neutrons reach magnet

…and damage REBCO

● at 20 K
● at 20 T
● while transport 

current is running
A test facility that replicates the 
fusion environment is needed! 
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The ideal test environment matches fusion conditions

Priority Ingredients to emulate 
fusion environment

What is most fusion-like?

1 Irradiation temperature Fusion magnets operated at ~20 K

2 Annealing effects prevented In-situ analysis without warm-up

3 High magnetic field Field on fusion magnets >20 T

4 Irradiation type Neutrons with relevant energy spectrum

5 Ic anisotropy assessment REBCO tapes experience all field angles

6 Performance assessment Transport current measurement

How to create fusion-like environment for REBCO tapes ?
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REBCO tapes after neutron irradiation at 330 K

High fluence neutron irradiation hints at radiation limits
Checklist for fusion-like conditions

D. X. Fischer, SUST, 31 (2018) 044006. In-core irradiation of REBCO tapes provides a first estimate for the 
radiation resistance, even if not conducted at cryogenic temperatures.

64 K

50 K

40 K

30 K

Fluence region where 
degradation starts for 
I
c
 at low temperatures 

irradiation temperature

annealing effects prevented

high magnetic background field

irradiation type

Ic anisotropy assessment

transport current measurements
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REBCO tapes after proton irradiation at 80 K

Temperature during irradiation influences degradation

irradiation type

irradiation temperature

annealing effects prevented

transport current measurements

high magnetic background field

Ic anisotropy assessment

Checklist for fusion-like conditions

B. N. Sorbom, MIT PhD Thesis, 2017. 

Cold irradiated REBCO tapes were warmed-up and then 
measured in external facility - annealing occurred. Takeaways: 

1. irradiation temperature matters
2. I

c
 anisotropy decreases after irradiation

pristine

irradiated at 423 K

irradiated at 80 K

1.2 MeV protons
fluence 5x1020 m-2 

Decrease
of ab-peak

different irrad. 
temperature

irradiation temperature

annealing effects prevented

high magnetic background field

irradiation type

Ic anisotropy assessment

transport current measurements
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Neutron irradiation at 330 K

Previously missing: cold irradiation with in-situ analysis

Fischer 2018

irradiation temperature

annealing effects prevented

high magnetic background field

irradiation type

Ic anisotropy assessment

transport current measurements

1.2 MeV proton irradiation

64 K

50 K

40 K

30 K

Sorbom 2017

80 K irradiated

pristine

423 K irradiated
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Neutron irradiation at 330 K

Previously missing: cold irradiation with in-situ analysis

Fischer 2018

1.2 MeV proton irradiation

64 K

50 K

40 K

30 K

Sorbom 2017

80 K irradiated

pristine

423 K irradiated

Severe knowledge gap about temperature effects!

irradiation temperature

annealing effects prevented

high magnetic background field

irradiation type

Ic anisotropy assessment

transport current measurements
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Neutron irradiation at 330 K

Previously missing: cold irradiation with in-situ analysis

Fischer 2018

1.2 MeV proton irradiation

MIT developed an irradiation facility to explore the role of temperature for I
c
 degradation, featuring:

● Irradiation at 20 K, the operation temperature of REBCO fusion magnets
● In-situ measurements to prevent annealing effects

64 K

50 K

40 K

30 K

Sorbom 2017

80 K irradiated

pristine

423 K irradiated

irradiation temperature

annealing effects prevented

high magnetic background field

irradiation type

Ic anisotropy assessment

transport current measurements
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MIT accelerator allows cold irradiation with various ions 

Cryogenic irradiation chamber
● 20-300 K temp. range
● Up to 100 A in-situ 

transport currents
● Measuring IV curves 

while irradiating

In-situ testing allows to preserve the radiation induced defect structure. Unique facility for 20 K ion irradiation and in-situ 
REBCO tape measurements - Review of Scientific Instruments, 95(6):063907, 06 2024.

1.7 MV tandem accelerator
● H, He, Li, O, Si, Au, etc
● Up to 100 µA beam curr.
● Up to 10.5 MeV

Accelerator

Control 
electronics

IonsIons

Cryocooler
● 25W @ 20 K
● 17 K base temperature
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Custom irradiation setup enables in-situ measurements

Irradiation chamber Irradiation chamber Installed REBCO sample

Cryocooler
Sample 
holder

Thermal 
shield

Collimator

Protons Protons

REBCO 
sample

Cernox 
sensor

V-

V+

I-

I+

4-terminal setup

REBCO samples can be analyzed in-situ without warm-up which preserves the radiation 
induced defect structure. This resembles the temperature history of operating fusion magnets.
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Advantages of using bridges
● Sample properties determined by bridge region
● Collimated beam (3 mm) covers entire bridge

- no rastering needed
● Uniform proton flux density 
● Required transport currents is kept to < 100 A

- even at 20 K
● Negligible sample heating during measurements

Bridged samples reduce experimental challenges
AMSC sample design

Faraday Factory Japan sample design
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● 1.2 MeV proton irradiation at 20 K, 77 K, 200 K and 300 K
● Beam currents of typically 100 nA through 8 mm2 round collimator hole
● Beam current measurements using picoammeter
● In-situ 4-terminal transport current measurements
● Assessment of I

c
 and n-value at 20 K and 77 K:

fitting linear line in log-log IV plot in range 0.2-20 μV and using E
c
 = 1 μV/cm

● Assessment of T
c
: 

intersection of tangent to transition region and tangent of normal conducting region

● All data obtained in self-field conditions!

Standard experimental methods were used for 
irradiations, measurements and evaluations
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Experimental procedure to assess radiation effects on Ic

time

Measurement 
temperature

I
c
 measurement

before irradiation step

Irradiation 
temperature

Temperature

I
c
 measurement

after irradiation stepirradiation step
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Radiation effects on critical currents measured at 
low temperature 

x
I
c
(20 K)

xI
c
(77 K)

self-field
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How to understand the plots
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Ic degradation after irradiation at 20 K

AMSC

20 K irradiation

self-field I
c
(20 K)
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Similar Ic degradation after low temperature irradiation 
across different microstructures 

AMSC

FFJ

20 K irradiation

self-field I
c
(20 K)
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Irradiations up to 200 K produce very similar Ic degradation

200 K irradiation

77 K irradiation

self-field I
c
(20 K)

20 K irradiation
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Warm irradiation is significantly less degrading

300 K irradiation

self-field I
c
(20 K)
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Warm irradiation is significantly less degrading 

300 K irradiation

self-field I
c
(20 K)

+60%

Warm irradiation requires 60% more fluence for the same I
c
 degradation
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Warm irradiation is significantly less degrading 

300 K irradiation

self-field I
c
(20 K)

+60%

-40%

Warm irradiation requires 60% more fluence for the same I
c
 degradation

- or in other words -

cold irradiation degrades I
c
 at a 40% faster rate.
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Warm irradiation is significantly less degrading - due to 
inherent annealing which limits the accumulation of defects

300 K irradiation

self-field I
c
(20 K)

+60%

-40%

Warm irradiation requires 60% more fluence for the same I
c
 degradation

- or in other words -

cold irradiation degrades I
c
 at a 40% faster rate.
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Radiation effects on critical currents measured at 
high temperature 

x

I
c
(77 K)

x

I
c
(20 K)

self-field
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Universal Ic(77 K) degradation for irradiations up to 200 K

self-field I
c
(77 K)

200 K irradiation

77 K irradiation

20 K irradiation
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Ic(77 K) degrades in cold irradiations also at a 40% lower fluence 
compared to 300 K irradiations

self-field I
c
(77 K)

Cold irradiation
(20-200K)

300 K irradiation

-40%
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Ic(77 K) degrades in cold irradiations also at a 40% lower fluence 
compared to 300 K irradiations

self-field I
c
(77 K)

Cold irradiation
(20-200K)

300 K irradiation

-40%

The critical currents I
c
(T) might 

generally degrade in cryogenic 
irradiations (20-200 K) at a ~40% lower 
fluence compared to warm (300 K) 
irradiations, independent of 
measurement temperature T (20-77K).
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Ic(77 K) degrades in cold irradiations also at a 40% lower fluence 
compared to 300 K irradiations

self-field I
c
(77 K)

Cold irradiation
(20-200K)

300 K irradiation

-40%

The critical currents I
c
(T) might 

generally degrade in cryogenic 
irradiations (20-200 K) at a ~40% lower 
fluence compared to warm (300 K) 
irradiations, independent of 
measurement temperature T (20-77K).

How does this translate to in-field 
behavior?
Will fusion magnets 40% faster than 
previously assumed?
At a fast neutron fluence of  
<2x1022m-2 instead of 3x1022m-2???
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The n-values also degrade at ~40% lower fluences 
in cold irradiations

n-value at 77 K n-value at 20 K 

-40%

-40%

Cold irradiation 300 K irradiation
Cold irradiation 300 K irradiation
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Average T
c
 degradation per 

proton fluence of 1020 m-2

for different irradiation 
temperatures:
300 K irr: -1.42 K 
200 K irr: -2.21 K
20 K irr:   -2.51 K

200 K
irradiation

20 K
irradiation

300 K
irradiation

Faster decrease of Tc in cold irradiations indicates 
build-up of higher point defect concentration
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The same Tc degradation corresponds to the same Ic 
degradation - independent of irradiation temperature!

I
c
(20)

I
c
(77K)

red points: 300 K irr
orange points: 200 K irr
blue points: 20 K irr

This suggests that T
c
 

reduction is a good metric 
for radiation damage!
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Why does the irradiation temperature affects all 
superconducting parameters in a very similar way?

-39% -40% -44%

Reduced parametersDegradation of superconducting properties per mDPA 

 20 K
300 K

All investigated superconducting parameters (I
c
, n-value and T

c
) degrade 

at ~40% lower fluences in irradiations at 20 K compared to irradiations at 
300 K. This observed universality could hint at a common underlying 
origin of the degradation - a reduction of the superfluid density?
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How to calculate the superfluid density

Michael Eisterer (TU Wien) 
suggests a decrease of the 
superfluid density ρ(0 K) according 
to Homes’ law, ICSM 2024, Turkey

Dependence of ρ(0 K) on T
c

ρ(T) for d-wave superconductors

These two inputs allow calculating the 
superfluid density ρ(20 K) and ρ(77 K) in 
our REBCO samples for different T

c
 

reductions.

d-wave

s-wave
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Superfluid density and critical currents correlate

ρ(20 K)

77 Kρ(77 K)

The calculated superfluid 
density has a similar 
functional dependence on T

c
 

degradation as the critical 
currents. 

A model that bases the 
degradation of I

c
 on a 

reduction of ρ(T) seems to 
be compatible with our 
experimental data   

upper 
symbols: 
I
c
(20 K)

lower 
symbols: 
I
c
(77 K)
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The annealing recovery accelerates with temperature

Annealing
200-300K

Annealing
20-200K

The recovery of the critical 
current is relatively small up to 
200 K, but increases 
significantly at higher 
temperatures, indicating 
substantial reconfiguration of 
the radiation induced defect 
structure
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Does the fit parameter Ea have a physical meaning?

Typical reported 
migration energies 
are around 1 eV.

Fit function for the recovery 
of the critical currents:
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Similar variation

Recovery 

Cold irradiation + annealing = warm irradiation?

After annealing 
similar I

c
 as after 

warm irradiation
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● Test the I
c
 degradation model of Michael Eisterer against our cryogenic proton 

irradiation results 

● Detailed experiments on how annealing temperature and duration influence recovery
● Upgrade ion irradiation setup with magnetic background field (~5 T)
● 2025: commissioning facility for cryogenic neutron irradiation and in-situ testing

• Fast neutron fluences of >5x1022 m-2

• Preservation of radiation induced defect structure
• I

c
 measurements in fields up of to 14 T

• Resolving angular dependent I
c
 degradation

What comes next?
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Cryogenic neutron irradiation facility will provide the 
most fusion-like test environment for REBCO tapes 

Features and capabilities of cold neutron irradiation facility 

● Fast neutron fluence of 5x1018 cm-2 within ~ 2 months
● Similar neutron spectrum as at fusion magnet position
● Temperature range 20-300 K
● High magnetic background field (14 T)
● Insitu transport current measurements up to 100 A
● I

c
 (T,B,θ) measurements of REBCO tapes

● Testing radiation response of other fusion magnets parts
○ Sensors
○ Fibre optics
○ Insulators
○ Stabilizers (copper, solder)

Measurement configuration

CryostatReactor core U235 plates 14 T magnet

Irradiation configuration

HTS 
sample

HTS 
sample



January 16, 2025 53©  MIT Plasma Science and Fusion Center

Cryogenic neutron irradiation facility will provide the 
most fusion-like test environment for REBCO tapes 

Measurement configuration

CryostatReactor core U235 plates 14 T magnet

Irradiation configuration

HTS 
sample

HTS 
sample

Checklist for fusion-like conditions

Facility becomes available this year!

irradiation temperature

annealing effects prevented

high magnetic background field

irradiation type

Ic anisotropy assessment

transport current measurements



January 16, 2025 54©  MIT Plasma Science and Fusion Center

● Motivation for this research
● Replication of fusion environment
● Cryogenic ion irradiation facility at MIT 
● Experimental results
● Next steps
● Conclusions

Outline of presentation



January 16, 2025 55©  MIT Plasma Science and Fusion Center

Conclusions

Operational this year!

300 K irr

20-? K irr

● The critical current degradation seems almost independent of 
irradiation temperature - as long as it is low enough! TBD:

• How does the microstructure change between 200-300 K?

• Is there physics behind the fit parameter E
a
≈0.1 eV? 

● Fusion magnets might degrade at significantly lower fluences 
than previous results obtained in warm irradiations suggest!

● Our experimental data is compatible with a degradation 
model based on the reduction of the superfluid density

● Critical next step is to study the degradation of I
c
(T, B, θ) after 

cryogenic neutron irradiation with fusion relevant spectrum 
to relevant fluences in-situ with transport currents! Results 
are essential to build optimized fusion magnets!

● We warmly invite collaborations to utilize our facilities!


