

Effect of irradiation temperature on degradation of REBCO tapes

David Fischer*, Alexis Devitre, Kevin Woller, Zoe Fisher, Zach Hartwig *Plasma Science and Fusion Center, Massachusetts Institute of Technology* *dafisch@mit.edu

RADSUM 2025, CERN, Switzerland January 16, 2025

Acknowledgements

- Discussions with TU Wien
	- Michael Eisterer
	- Raphael Unterrainer
- Provided REBCO samples
	- Bridged AMSC samples: Nick Strickland *et al* (Victoria University of Wellington)
	- Faraday Factory Japan
- Eni
- Commonwealth Fusion Systems

Outline of presentation

- Motivation for this research
- **Replication of fusion environment**
- Cryogenic ion irradiation facility at MIT
- Experimental results
	- Cryogenic vs warm irradiation
	- Degradation mechanism?
	- Annealing recovery
- **Next steps**
- **Conclusions**

Outline of presentation

- Motivation for this research
- Replication of fusion environment
- Cryogenic ion irradiation facility at MIT
- Experimental results
- Next steps
- Conclusions

REBCO must survive radiation damage in fusion devices

> 100,000,000 K deuterium-tritium plasma

REBCO must survive radiation damage in fusion devices

High energy neutrons reach magnet

REBCO must survive radiation damage in fusion devices

High energy neutrons reach magnet

REBCO must survive radiation damage in fusion devices

High energy neutrons reach magnet

...which limits the life of a fusion power plant

by eventually decreasing:

- critical currents: op $<$ \vert _c
- achievable field: $\sqrt{ }$ B ∞ I
- op **power output:** \overline{V}

Magnet system is most expensive (>>\$100M) part of fusion device and a lifetime component

Degradation behaviour has to be understood to develop long-lasting and economically viable fusion power plants!

REBCO must survive radiation damage in fusion devices

High energy neutrons reach magnet

...which limits the life of a fusion power plant

by eventually decreasing:

- critical currents:
- achievable field: $\sqrt{ }$ B ∞ I
- op \leq $\frac{1}{2}$ c
- **power output:** $\overline{V} \overline{V} \overline{V}$ P $\propto B^4$

op

Magnet system is most expensive (>>\$100M) part of fusion device and a lifetime component

Degradation behaviour has to be understood to develop long-lasting and economically viable fusion power plants!

A test facility that replicates the fusion environment is needed!

Outline of presentation

- Motivation for this research
- Replication of fusion environment
- Cryogenic ion irradiation facility at MIT
- Experimental results
- Next steps
- Conclusions

The ideal test environment matches fusion conditions

How to create fusion-like environment for REBCO tapes ?

High fluence neutron irradiation hints at radiation limits

REBCO tapes after neutron irradiation at 330 K

AMSC 344C, 15 T, H || c

Checklist for fusion-like conditions

D. X. Fischer, *SUST*, 31 (2018) 044006. **In-core irradiation of REBCO tapes provides a first estimate for the** radiation resistance, even if not conducted at cryogenic temperatures.

Temperature during irradiation influences degradation

REBCO tapes after proton irradiation at 80 K

B. N. Sorbom, MIT PhD Thesis, 2017.

Checklist for fusion-like conditions

Cold irradiated REBCO tapes were warmed-up and then measured in external facility - annealing occurred. Takeaways:

- 1. irradiation temperature matters
- 2. I $_{\rm c}$ anisotropy decreases after irradiation

Previously missing: cold irradiation with in-situ analysis

Neutron irradiation at 330 K AMSC 344C, 15 T, H || c

Previously missing: cold irradiation with in-situ analysis

Severe knowledge gap about temperature effects!

Previously missing: cold irradiation with in-situ analysis

MIT developed an irradiation facility to explore the role of temperature for I_c degradation, featuring:

- Irradiation at 20 K, the operation temperature of REBCO fusion magnets
- In-situ measurements to prevent annealing effects

Outline of presentation

- Motivation for this research
- Replication of fusion environment
- Cryogenic ion irradiation facility at MIT
- Experimental results
- Next steps
- Conclusions

MIT PSFC MIT accelerator allows cold irradiation with various ions

1.7 MV tandem accelerator

- H, He, Li, O, Si, Au, etc
- Up to 100 μ A beam curr.
- Up to 10.5 MeV

Cryogenic irradiation chamber

- 20-300 K temp. range
- Up to 100 A in-situ transport currents
- **Measuring IV curves** while irradiating

Cryocooler

- 25W @ 20 K
- 17 K base temperature

In-situ testing allows to preserve the radiation induced defect structure. Unique facility for 20 K ion irradiation and in-situ REBCO tape measurements - *Review of Scientific Instruments, 95(6):063907, 06 2024.*

MIT PSFC Custom irradiation setup enables in-situ measurements

REBCO samples can be analyzed in-situ without warm-up which preserves the radiation induced defect structure. This resembles the temperature history of operating fusion magnets.

Bridged samples reduce experimental challenges

Advantages of using bridges

- Sample properties determined by bridge region
- Collimated beam (3 mm) covers entire bridge - no rastering needed
- Uniform proton flux density
- Required transport currents is kept to $<$ 100 A - even at 20 K
- Negligible sample heating during measurements

Faraday Factory Japan sample design

Standard experimental methods were used for irradiations, measurements and evaluations

- **1.2 MeV proton** irradiation at **20 K**, 77 K, 200 K and **300 K**
- Beam currents of typically **100 nA** through 8 mm² round collimator hole
- Beam current measurements using picoammeter
- **In-situ** 4-terminal transport current measurements
- Assessment of **I c** and **n-value** at **20 K** and **77 K**: fitting linear line in log-log IV plot in range 0.2-20 μ V and using E_c = 1 μ V/cm
- Assessment of **T** : **c** intersection of tangent to transition region and tangent of normal conducting region
- All data obtained in **self-field** conditions!

Outline of presentation

- Motivation for this research
- Replication of fusion environment
- Cryogenic ion irradiation facility at MIT
- Experimental results
- Next steps
- Conclusions

Outline of presentation

- Motivation for this research
- Replication of fusion environment
- Cryogenic ion irradiation facility at MIT
- Experimental results
	- Cryogenic vs warm irradiation
	- Degradation mechanism?
	- Annealing
- Next steps
- **Conclusions**

Experimental procedure to assess radiation effects on I_c

Radiation effects on critical currents measured at low temperature

How to understand the plots

I c degradation after irradiation at 20 K

MIT PSFC Similar I_g degradation after low temperature irradiation across different microstructures

MIT PSFC Irradiations up to 200 K produce very similar I_c degradation

Warm irradiation is significantly less degrading

Warm irradiation is significantly less degrading

Warm irradiation is significantly less degrading

MIT PSFC Warm irradiation is significantly less degrading - due to inherent annealing which limits the accumulation of defects

Radiation effects on critical currents measured at high temperature

January 16, 2025 © MIT Plasma Science and Fusion Center 34

Universal I_c(77 K) degradation for irradiations up to 200 K'

MIT PSFC I_c(77 K) degrades in cold irradiations also at a 40% lower fluence compared to 300 K irradiations

MIT PSFC I_c(77 K) degrades in cold irradiations also at a 40% lower fluence compared to 300 K irradiations

The critical currents $I_c(T)$ might generally degrade in cryogenic irradiations (20-200 K) at a ~40% lower fluence compared to warm (300 K) irradiations, independent of measurement temperature T (20-77K).

MIT PSFC I_c(77 K) degrades in cold irradiations also at a 40% lower fluence compared to 300 K irradiations

The critical currents $I_c(T)$ might generally degrade in cryogenic irradiations (20-200 K) at a $~1$ 40% lower fluence compared to warm (300 K) irradiations, independent of measurement temperature T (20-77K).

How does this translate to in-field behavior? Will fusion magnets 40% faster than previously assumed? At a fast neutron fluence of $\leq 2x10^{22}$ m⁻² instead of $3x10^{22}$ m⁻²???

The n-values also degrade at ~40% lower fluences MIT PSFC in cold irradiations

MIT PSFC Faster decrease of T_c in cold irradiations indicates c build-up of higher point defect concentration

Average T_c degradation per proton fluence of 10²⁰ m⁻² for different irradiation temperatures: 300 K irr: -1.42 K 200 K irr: -2.21 K 20 K irr: -2.51 K

The same T_c degradation corresponds to the same I_c degradation - independent of irradiation temperature!

MIT PSFC Why does the irradiation temperature affects all superconducting parameters in a very similar way?

Degradation of superconducting properties per mDPA Reduced parameters

$$
i_{\rm c} = I_{\rm c}/I_{\rm c}^{\rm unir}
$$

$$
n^* = (n\text{-value})/(n\text{-value}^{\rm unir})
$$

$$
t_{\rm c} = T_{\rm c}/T_{\rm c}^{\rm unir}
$$

All investigated superconducting parameters (I_c, n-value and T_c) degrade at ~40% lower fluences in irradiations at 20 K compared to irradiations at 300 K. This observed universality could hint at a common underlying origin of the degradation - a reduction of the superfluid density?

Outline of presentation

- Motivation for this research
- Replication of fusion environment
- Cryogenic ion irradiation facility at MIT
- Experimental results
	- Cryogenic vs warm irradiation
	- Degradation mechanism?
	- Annealing
- Next steps
- **Conclusions**

How to calculate the superfluid density

Dependence of $p(0 K)$ on T_c

 $\rho \propto \frac{t_c}{1 + k(1 - t_c)}$ $\begin{array}{l} \text{k = 16.5 for REBCO} \\ \text{t_c = T_c/T_c^{\text{unirr}}} \end{array}$

Michael Eisterer (TU Wien) suggests a decrease of the superfluid density $\rho(0 K)$ according to Homes' law, ICSM 2024, Turkey

These two inputs allow calculating the superfluid density $p(20 K)$ and $p(77 K)$ in our REBCO samples for different T_c reductions.

 $\rho(T)$ for d-wave superconductors

Superfluid density and critical currents correlate

The calculated superfluid density has a similar functional dependence on T_c degradation as the critical currents.

A model that bases the degradation of I_c on a reduction of ρ(T) seems to be compatible with our experimental data

Outline of presentation

- Motivation for this research
- Replication of fusion environment
- Cryogenic ion irradiation facility at MIT
- Experimental results
	- Cryogenic vs warm irradiation
	- Degradation mechanism
	- Annealing
- Next steps
- **Conclusions**

The annealing recovery accelerates with temperature

Does the fit parameter E _a have a physical meaning?

Cold irradiation + annealing = warm irradiation?

January 16, 2025 © MIT Plasma Science and Fusion Center 49

Outline of presentation

- Motivation for this research
- Replication of fusion environment
- Cryogenic ion irradiation facility at MIT
- Experimental results
- Next steps
- Conclusions

What comes next?

- Test the I_c degradation model of Michael Eisterer against our cryogenic proton irradiation results
- Detailed experiments on how annealing temperature and duration influence recovery
- Upgrade ion irradiation setup with magnetic background field (\sim 5 T)
- 2025: commissioning facility for cryogenic neutron irradiation and in-situ testing
	- Fast neutron fluences of $>5x10^{22}$ m⁻²
	- Preservation of radiation induced defect structure
	- I_c measurements in fields up of to 14 T
	- Resolving angular dependent I_c degradation

Cryogenic neutron irradiation facility will provide the most fusion-like test environment for REBCO tapes

Irradiation configuration

Reactor core U235 plates Cryostat 14 T magnet

Measurement configuration

Features and capabilities of cold neutron irradiation facility

- Fast neutron fluence of $5x10^{18}$ cm⁻² within \sim 2 months
- Similar neutron spectrum as at fusion magnet position
- Temperature range 20-300 K
- High magnetic background field (14 T)
- Insitu transport current measurements up to 100 A
- \bullet I_c (T,B, θ) measurements of REBCO tapes
- Testing radiation response of other fusion magnets parts
	- Sensors
	- Fibre optics
	- Insulators
	- Stabilizers (copper, solder)

Cryogenic neutron irradiation facility will provide the most fusion-like test environment for REBCO tapes

Irradiation configuration

Reactor core U235 plates Cryostat 14 T magnet

Measurement configuration

Checklist for fusion-like conditions

Facility becomes available this year!

Outline of presentation

- Motivation for this research
- Replication of fusion environment
- Cryogenic ion irradiation facility at MIT
- Experimental results
- Next steps
- Conclusions

Conclusions

- The critical current degradation seems almost independent of irradiation temperature - as long as it is low enough! TBD:
	- How does the microstructure change between 200-300 K?
	- Is there physics behind the fit parameter $E_a \approx 0.1$ eV?
- Fusion magnets might degrade at significantly lower fluences than previous results obtained in warm irradiations suggest!
- Our experimental data is compatible with a degradation model based on the reduction of the superfluid density
- Critical next step is to study the degradation of $I_c(T, B, \theta)$ after cryogenic neutron irradiation with fusion relevant spectrum to relevant fluences in-situ with transport currents! Results are essential to build optimized fusion magnets!
- We warmly invite collaborations to utilize our facilities!

Operational this year!