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Outline

• Capabilities of the FLUKA particle transport code
• Condensed particle-history simulation
• Focus on radiation-damage-related quantities in FLUKA 
• NIEL and DPA in FLUKA 
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An overview of the 
FLUKA particle transport code
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The FLUKA particle transport code

• Monte Carlo (MC) code for the simulation 
of coupled hadronic and electromagnetic 
particle showers in matter

• Born in the 1960s at CERN
• Actively developed and maintained by the 

FLUKA.CERN Collaboration
(CERN + ELI ERIC)

• Standard tool at CERN for problems 
involving radiation-matter interaction in 
present and future colliders:

• Targetry studies, beam intercepting devices, 
beam-loss assessments, radiation protection, 
radiation damage, radiation effects in 
electronics, etc.

RADSUM 4

https://fluka.cern

• Serving a worldwide community of 
thousands of users working in:

• Shielding, dosimetry, medical applications, 
space applications, etc

• User support and training:
• https://fluka-forum.web.cern.ch 

https://fluka.cern/support/courses-and-events 

https://doi.org/10.23732/CYRCP-2018-002.17
https://cds.cern.ch/record/1481554

https://fluka.cern/
https://fluka-forum.web.cern.ch/
https://fluka.cern/support/courses-and-events
https://doi.org/10.23732/CYRCP-2018-002.17
https://cds.cern.ch/record/1481554


FLUKA in a nutshell (overly simplified!)
• FLUKA handles the transport+interaction of:                         

• Rich physics engine with state-of-the-art modelling of all relevant radiation-matter 
interaction mechanisms:

• Secondary particle production (particle showers)                   
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https://flukafiles.web.cern.ch/manual/chapters/quick_look.html 
https://indico.cern.ch/event/1444491/timetable/#20241202 

https://flukafiles.web.cern.ch/manual/chapters/quick_look.html
https://indico.cern.ch/event/1444491/timetable/


MC workflow (1/3): geometry and material definition
• Combinatorial geometry, built from 

union/subtraction operations on 
basic geometrical bodies

• As of FLUKA v4-5.0 (Q1 2025),
tetra-, penta-, and hexahedral 
unstructured meshes are supported

• Materials in FLUKA are assumed 
homogeneous and isotropic

• No coherent scattering effects in 
general

• (Ad-hoc account of molecular / 
crystalline binding environment for 
thermal neutrons, and channeling of 
positively charged particles in bent 
crystals)
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See also the LineBuilder https://accelconf.web.cern.ch/ipac2012/papers/weppd071.pdf 

https://accelconf.web.cern.ch/ipac2012/papers/weppd071.pdf


MC workflow (2/3): source definition + particle history simulation

• Simulate a large ensemble of 
particle random walks according 
to the cross sections and mean 
free paths of all relevant interaction 
mechanisms (and decay where 
applicable)

• All particles are transported until 
they either exit the geometry, or 
their energy drops below a preset 
threshold
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450 GeV/c proton beam loss

A. Lechner



MC workflow (3/3): extract physical observables
• Every simulated particle history contributes to 

statistical estimators of relevant physical 
quantities requested by the user, featuring:

• Particle fluences/currents in a volume or across a surface 
(differential in position, energy, angle, etc)

• Energy deposition (heat, power, dose, …)
• Radionuclide inventories, including their time evolution 

in a single FLUKA run + associated protection quantities
• Damage-related quantities: NIEL, Si 1-MeV-n equivalent 

fluence, DPA-NRT, arc-DPA
• NB: FLUKA contains built-in scoring capabilities for 

all of them, no coding involved, just an input-file 
option.

• No on-line material degradation: every particle 
history sees the same new, pristine, ideal 
material
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Dose profile in graphite



FLUKA benchmarking and validation
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https://doi.org/10.1051/epjconf/202328416006
https://doi.org/10.1103/PhysRevAccelBeams.22.071003

R. Froeschl et al.

• Dedicated workpackage (Code development support)
• Regular participation in code benchmarking campaigns,

among others within SATIF workshops

p

(tomorrow)

et al.

https://doi.org/10.1051/epjconf/202328416006
https://doi.org/10.1103/PhysRevAccelBeams.22.071003


Flair – a one-stop shop for FLUKA simulations
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https://flair.cern 

• Advanced graphical user interface
• Allows users to edit/debug/render geometries, 

prepare the input file, set up the run (even in 
parallel / across cluster nodes), process results, 
plot physical observables

• FARM: Flair advanced render module

https://doi.org/10.1103/PhysRevAccelBeams.22.071003 https://indico.cern.ch/event/1444491/contributions/6234932/attachments/2977548/5241983/01_Introduction_to_FLUKA_2024_CERN.pdf 

https://fair.cern/
https://doi.org/10.1103/PhysRevAccelBeams.22.071003
https://indico.cern.ch/event/1444491/contributions/6234932/attachments/2977548/5241983/01_Introduction_to_FLUKA_2024_CERN.pdf


Displacement-damage modeling in FLUKA

FLUKA focuses not only on the description of radiation fields, but also on 
their effect in matter (within the approximations pointed out above)
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Instantaneous effects and related quantities in FLUKA
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Figure credit: C. Garion

Tungsten-alloy shieldingCooling 
channels

Vacuum chamber

Beam 
screen

• Power deposition (mW/cm3) à local hot spots and SC magnet quench limits
• Total deposited energy à Cryogenics constrains
• Accidental beam loss and consequences
• Single-event effects in electronics
• ….

See:

 
(yesterday)

ISSI SRAM tester. Courtesy 
of G. Lerner.



Cumulative effects
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Total ionizing dose

Cylinders of alanine
/polymer mixture
 (~4 cm length)
From: M. Brugger

http://dx.doi.org/10.1109/TASC.2016.2549858 

Atomic displacements

Gas production

Nb3Sn wires

• Affects chemical bonds
• Relevant for organic materials 

(insulators)

• Production of H and He
• Correlated with production of 

“bubbles”/cracks in the material

• Primary knock-on atom (PKA) is transferred
a recoil kinetic energy

• Cascade of ion-hole pairs
• Recombination
• Net displacement damage
• Degradation of transport properties

https://doi.org/10.1038/s41467-018-03415-5 

(see these talks tomorrow)

http://dx.doi.org/10.1109/TASC.2016.2549858
https://doi.org/10.1038/s41467-018-03415-5


• Elastic scattering on the electrostatic 
potential:

• Mostly small deflections, large cross section
• Mean free paths O(nm-um)

• We can in general not afford to sample 
individual Coulomb scatterings in FLUKA*

• Instead, multiple Coulomb scattering theory 
(Molière) gives effective angular distribution 
after a macroscopic particle step

• Recoil: see next slide
• Elastic scattering on the nuclear potential:

• Mostly large deflections, lower cross section
• Mean free paths O(1-10) cm
• Explicit recoil transport in FLUKA 

(if above threshold)
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https://doi.org/10.1016/j.cpc.2024.109276 

Toy form factor for finite size
of nuclear charge distribution

• One-to-one correspondence between 
𝜃!" and recoil energy transfer T:

𝑇 = #!"
# (%&'() *!")

,$
	 -.
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Relevant primary knock-on source: elastic scattering

EXFOR 

https://doi.org/10.1016/j.cpc.2024.109276
https://www-nds.iaea.org/exfor/


Nuclear stopping power
• With a condensed-history approach, one loses the possiblity of an event-by-event 

explicit production of primary knock-on atoms (PKAs) from Coulomb scattering
• FLUKA accounts for the specific energy transfer to the material as a result of 

Coulomb scattering via the nuclear stopping power, (average energy loss per unit 
path length due to Coulomb scattering) for every charged particle species: 
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E:       particle energy (GeV)
x:        path length (cm)
T:        Energy transfer to PKA (GeV)
NA:      Avogadro number (mol-1)
𝜌:        material density (g cm-3)
Aw:      atomic weight (g mol-1)
Tmax:    maximum recoil energy (GeV)
d𝜎/dT: diff. cross section for elastic scattering on 
           electrostatic potential of  target atom (cm2 GeV-1)

(GeV/cm)



Not every T dislodges atoms: damage threshold energy
• Only recoil energies above the 

damage threshold Ed 
(typically 10s of eV) dislodge 
the target ion from its lattice 
site (PKA)
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• Considerable variation of Ed as a function of 
lattice site, momentum-transfer direction, etc

• FLUKA asks user for average displacement 
threshold (user-input or 30 eV by default)https://doi.org/10.1073/pnas.2134173100

https://doi.org/10.1016/j.nucet.2017.08.007 

https://doi.org/10.1073/pnas.2134173100
https://doi.org/10.1016/j.nucet.2017.08.007


Not all of T goes into atomic collisions: the partition function
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• Considerable differences wrt Sn/(Sn+Se) at 
high energies.

• To minimize their impact, it’s best to 
lower FLUKA ion transport cuts to lowest 
limit (~250 eV/u)

• The PKA kinetic energy T will be lost to ionization (no 
displacement damage) and Coulomb scattering 
(displacement damage).

• One needs an effective way to ”discount” the 
fraction of T which would be spent on ionization: 
enter the Lindhard partition function 

• In FLUKA we rely on a parametrized function based 
on https://doi.org/10.1109/23.907581:

• Approximations:
• Recoil energy << Projectile kinetic energy
• Electronic stopping << Nuclear stopping

(L: lattice atom) 
(R: recoil atom)

https://doi.org/10.1109/23.907581


Non-ionizing energy loss (NIEL) in FLUKA

• The NIEL is a basic quantity accounting for both the 
damage threshold and the partition function:

• Tabulated in FLUKA at initialization as a function of 
energy, apportioned among particle steps runtime.

• NIEL: quantifies the fraction of energy transferred to the 
material which might produce displacement damage.

• Although still in use, it is not the end of the story. Not all 
of the NIEL goes into displacement damage: some is 
dissipated as heat (phonons)

• NIEL does not make any prediction of defect 
cascades
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Particularly useful for Si as target 
material, i.e. for electronics

Conveniently recast in terms of a 
damage function D(E) 

https://doi.org/10.1016/S0168-9002(98)01462-4 

(GeV/cm3)

https://doi.org/10.1016/S0168-9002(98)01462-4


Estimating displacement damage: DPA in FLUKA*
• The quantity displacements per atom (DPA) goes beyond the NIEL, 

in that it converts the energy available for displacement into a 
number of ion-hole (Frenkel) pairs

• Two variants available in FLUKA, both treated as “stopping-power-
like” quantities, apportioned over macroscopic particle steps:

• Norgett-Robinson-Torrens displacements per atom (DPA)*:
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DPA-NRT(E) =
NAω

Aw

∫ Tmax

Ed

dT
dε(E)

dT
NNRT(Td), Td = L(T )T, NNRT(Td) =






0 if 0 < Td < Ed,
1 if Ed < Td <

2Ed
0.8 ,

0.8Td
2Ed

if 2Ed
0.8 < Td

Ref: Norgett M.J. et al., Nucl Eng Des 33 50-54 (1975)

(1/cm)

*See however the following paper+slides for second-level sub-cascade treatment:
http://dx.doi.org/10.15669/pnst.2.769 
https://indico.cern.ch/event/769192/contributions/3287282/attachments/1794339/2924300/RadiationEffectsLHCexperiments.pdf 

Legacy binary collision model

The factor of 0.8 accounts for more 
realistic atomic potential instead of 
hard sphere scattering of original 
Kinchin-Pease calculations + crude 
recombination efficiency

https://doi.org/10.1016/0029-5493(75)90035-7 
“The binary collision simulations used as the basis of the
NRT-dpa model focused on the collisional phase of the 
displacement cascade and did not consider the dynamics of
cascade evolution as atomic velocities fell”
(Overestimation of displacement damage)

Ref: Nordlund K. et al., Nat. Commun. 9 1084 (2018)

~ “ “

http://dx.doi.org/10.15496/publikation-20433 

http://dx.doi.org/10.15669/pnst.2.769
https://indico.cern.ch/event/769192/contributions/3287282/attachments/1794339/2924300/RadiationEffectsLHCexperiments.pdf
https://doi.org/10.1016/0029-5493(75)90035-7
http://dx.doi.org/10.15496/publikation-20433


Estimating displacement damage: DPA in FLUKA*
• Athermal-recombination-corrected DPA*:
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ARC-DPA(E) =
NAω

Aw

∫ Tmax

Ed

dT
dε(E)

dT
NarcDPA(T ), Td = L(T )T, NarcDPA(Td) =






0 if 0 < Td < Ed,
1 if Ed < Td <

2Ed
0.8 ,

0.8Td
2Ed

ϑarcDPA(Td) if 2Ed
0.8 < Td

Ref: Nordlund K. et al., Nat. Commun. 9 1084 (2018)

(1/cm)

*See however the following paper+slides for second-level sub-cascade treatment:
http://dx.doi.org/10.15669/pnst.2.769 
https://indico.cern.ch/event/769192/contributions/3287282/attachments/1794339/2924300/RadiationEffectsLHCexperiments.pdf 

https://doi.org/10.1038/s41467-018-03415-5 

Scoring of arc-DPA is available in FLUKA 
since v4-3.0 (Sep 2022)

”b” and “c” parameters determined from MD 
or experiments for a given material

Lim b=0, c=0 of arc-DPA à DPA-NRT

Parameter compilation from Konobeyev et al., 
https://doi.org/10.1016/j.nucet.2017.08.007 

For elementary materials…

~

http://dx.doi.org/10.15669/pnst.2.769
https://indico.cern.ch/event/769192/contributions/3287282/attachments/1794339/2924300/RadiationEffectsLHCexperiments.pdf
https://doi.org/10.1038/s41467-018-03415-5
https://doi.org/10.1016/j.nucet.2017.08.007


DPA of all particles scored on equal footing in FLUKA
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Charged particles:
a) Transport step (condensed history): restricted NIEL/DPA over the step
b) Below transport threshold: estimate NIEL/DPA as integral over nuclear stopping 

power x L(T).

Recoils from nuclear elastic scattering (n,p,𝝅,K) / residuals from nuclear reactions:
• Go to a) if its kinetic energy is above transport threshold, go to b) if below

NB: as of newly included point-wise treatment of neutron interactions below 
20 MeV in FLUKA v4-4.0 (Feb 2024), their* contribution to NIEL/DPA is treated 
coherently with the rest of particles



DPA-NRT vs arc-DPA

• Granted, low DPA.
• See this talk tomorrow for more consequent examples relevant for Muon Collider studies:

• See also SATIF15 code intercomparison for MC simulation of displacement damage
https://www.oecd-nea.org/upload/docs/application/pdf/2024-05/satif15-session-7-and-8.pdf#page=25

•   
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Ed=31 eV, b=-1, c=0.46 Ed=70 eV, b=-0.56 eV, c=0.12Be W

https://www.oecd-nea.org/upload/docs/application/pdf/2024-05/satif15-session-7-and-8.pdf


Radiation to Muon-Collider ring magnets
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Cumulative dose and DPA in coils of arc dipoles after 5 yrs 
(with 3 cm thick tungsten shielding):

Assuming 5 years 
with 140 days of 
operation per year

Dose in coils à mostly due to e-/γ 
DPA in coils à mostly due to neutrons

<10-4 DPA20 MGy



Summary
• General overview of FLUKA
• Displacement damage modelling in FLUKA: NIEL and DPA
• Advantages and limitations

• Coherent treatment across all particle species
• Built-in scoring of NIEL, DPA-NRT, arc-DPA
• Use of average damage thresholds
• No on-line simulation of material degradation

• Still, effective DPA scoring as a probe of displacement 
damage

• Feel free to register and download FLUKA!
• If interested, consider attending one of our trainings!
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https://fluka.cern/support/courses-and-events 

https://fluka.cern/ 

https://fluka.cern/support/courses-and-events
https://fluka.cern/



