RADSUM25, 16 January 2025

DPA modeling in the PHITS code

Yosuke Iwamoto

Japan Atomic Energy Agency

Contents

1. Introduction

2. Radiation damage model in PHITS

3. Intercomparison of DPA calculations for target materials using PHITS, FLUKA, MCNP

4. Summary

Scale on total irradiation effect

This work deals with the nuclear reaction and the approximation of displacement damage, which are the initial stages of damage.

Microscopic effects on material

G. S. Was, Fundamentals of Radiation Materials Science, New York, USA: Springer Press, 2017

Radiation damage model

Contents

- 1. Introduction
- 2. Radiation damage model in PHITS
- 3. Intercomparison of DPA calculations for target materials using PHITS, FLUKA, MCNP
- 4. Summary

Overview of PHITS

Particle and Heavy Ion Transport code System

Development

JAEA (Japan), RIST (Japan), KEK (Japan), Technische Universitat Wien(Austria) RIKEN (Japan), CEA (France), Kyushu Univ. (Japan)

Transport and collision of various particles over wide energy range

in 3D phase space

neutron, proton, meson, baryon electron, photon, heavy ions

up to 100 GeV/u

T. Sato et al., J. Nucl. Sci. Technol., 61, (2023) 127–135.

DPA calculation method in PHITS

Differential Coulomb scattering cross section

Number of displaced atoms

Number of displaced atoms is calculated using phenomenological approach.

J. Lindhard et al., Dan Vidnsk Selsk Mat Fyf Medd 33:1 (1963).

Next: Defect production efficiency

Athermal recombination correction

Molecular dynamic simulation study K. Nordlund et al., Nature Comm. 9 (2018) 1084. NRT damage model Actual damage production

Schematic illustration of the damage for the case of ~1 keV damage energy in a metal

Actual damage production is addressed by new athermal recombination correction (arc-dpa) using efficiency function based on tabulated parameters.

$$N_{\rm arc}(\varepsilon_{\rm p}) = \frac{0.8}{2E_{\rm d}} T_{\rm d}(\varepsilon_{\rm p}) \zeta_{arc}(E_{\rm d})$$
$$\zeta_{arc} = \frac{1-c}{(2E_{\rm d}/0.8)^b} E_{\rm d}^b + c$$

Displacement cross sections for AI, Cu, and W

Ep 440 GeV at HiRadMat CERN (plan)

Irradiation Area

<u>TT61</u>

HiRadMat has dedicated feedthroughs into an adjacent tunnel (TT61) where additional electronic and measurement systems can be added. Progress has been made to shield this area from radiation effects. Borrowing vac. chamber and cryocooler from MPE-CB group, using at HiRadMat

> 3D model of feed-through between HiRadMat Experimental Area and Electronics Area.

20-Dec-18

5th RaDIATE Collaboration Meeting

F. Harden

Experiment planned in May 2025

Contents

- 1. Introduction
- 2. Radiation damage model in PHITS
- 3. Intercomparison of DPA calculations for target materials using PHITS, FLUKA, MCNP
- 4. Summary

Benchmarking against dpa value in the target is not the case for not directly observable value.

Proceedings of 15th Workshop on Shielding aspects of Accelerators, Targets, and Irradiation Facilities (SATIF-15) (Internet), p.25 - 34, 2022/09

PHITS:	Yosuke Iwamoto, Lan Yao (JAEA)
FLUKA:	Francesco Cerutti, Robert Froeschl, Tommaso Lorenzon, Francesc Salvat Pujol, and Vasilis Vlachoudis (CERN)
MCNP:	Çelik Yurdunaz (SCK/CEN)

Calculation condition

Output: depth distribution of DPA in the target.

1) Neutron source with the ⁹Be(p,n) reaction

Beam: 30 MeV proton with a radius of 6 cm. Target: ⁹Be with a thickness of 5.5 mm, a radius of 6 cm, and 1.85 g/cm³

2) Spallation neutron source in WNR, LANCE

Beam: 800 MeV proton with a radius of 1 cm. Target: Tungsten with a thickness of 20 cm, a radius of 1 cm, and 19.3 g/cm³

3) Neutrino source target in J-PARC

Beam: 30 GeV proton with 1 cm radius Target: Carbon with a 90 cm thickness, 1 cm radius, and 2.2 g/cm³

Results: case 1) and case 2)

Results: Case 3)

With increasing the energy of the incident protons, the contribution of secondary particles becomes larger at a deeper position.

FLUKA is larger than PHITS by a factor of around 1.5 and MCNP by a factor of around 2. The possible reasons for this are as follows

- > Differences in the σ_{disp} of protons, neutrons, and pions
- > Lack of σ_{disp} for electrons and photons due to electromagnetic showers (MCNP, PHITS)

Contents

- 1. Introduction
- 2. Radiation damage model in PHITS
- 3. Intercomparison of DPA calculations for target materials using PHITS, FLUKA, MCNP
- 4. Summary

Summary

- DPA modeling has been developed in the PHITS code.
- In the high energy region (> ~100 MeV) for proton beams, DPA created by secondaries increase due to nuclear reactions.
- In comparing the calculated and experimental results for σ_{dpa.},
 NRT-dpa (standard) is approximately three times greater than arc dpa.
 Arc dpa reproduces the experimental data well.
- For the comparison of the depth distribution of DPA in thick targets between codes,
 - The difference in the results becomes larger at proton energies of 30 GeV or higher.
 - The displacement cross section of all particles in the high-energy region needs to be confirmed in the future.

Backup

wodels and ibraries nignighted in gray are not used in the default setting									
		Neutron	Proton	Nucleus	Muon	e- / e+	Photon		
	106-	1	TeV	1 TeV/n	1 TeV			1 TeV	
scale)	10 ³ -	JAM 3.0	+ <mark>GEM</mark> GeV	JAMQMD + GEM	JAM/		EPDL97 or EGS5	JAM/ JQMD + GEM + JENDL	
		INCL	4.6 + GEM	d JQMD t +	GEM	EGS5 or ETS			
		200 MeV		GEM	200 MeV				
	10 ² -	20 MeV	JENDL-5	α <mark>10 MeV/n</mark>	ATIMA				
l III (f	10 ⁰ -	IENDI -4.0 AT	IMA or	+ Original Model			NRF		
E,	10-3_	OLINDE 4.0	1 keV KURBU	IC / ITSART	1 keV	1 keV	1 keV		
ū	10		*Only for negative	muon capture	*JQMD + GEM	ETS			
	10-11	0.01 meV			GLIVI	Imev			

Red: Nuclear reaction model or library Blue: Atomic interaction model or library Models and libraries highlighted in gray are not used in the default setting

Displacement cross sections in this work

DPA is calculated by folding displacement cross section with particle spectrum

$$\begin{aligned} \mathbf{DPA} &= \int \sigma_{\mathrm{disp}}(E) \, \emptyset(E) dE \\ \sigma_{\mathrm{disp}}(E) &: \mathbf{displacement\ cross\ section\ (barns)} \\ \emptyset(E) &: \mathrm{Fluence\ (1/cm^2/source\ particle)} \end{aligned}$$

PHITS3.26 σ_{disp} for neutrons, protons, pion+, and pion- up to 120 GeV were calculated by PHITS.

FLUKA4-3.0 σ_{disp} for neutrons, protons, pion+, pion-, others

were calculated by FLUKA.

MCNP6 σ_{disp} for neutrons and protons up to 10 GeV were obtained from the following the IAEA database.

https://www-nds.iaea.org/public/download-endf/DXS/ A.Yu.Konobeyev,et al.

In energies above 10 GeV, σ_{disp} of 10 GeV were adopted.

Results

3) 30 GeV proton on a 90 cm thick Graphite

24

