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This work deals with the nuclear reaction and the approximation of
displacement damage, which are the initial stages of damage.



Microscopic effects on material
DPA: average number of displaced atoms per atom of a material
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Radiation damage model

SRIM (Transport of lons in Material): Major code for radiation damage
J.F. Ziegler, et al, see www.srim.org

(" Transport Energy transfer Cascade dtzflmage_\ \
- — approximation
(Ep.__> e _/_,:gmectlle 4 o0 C]3300000000000\
oot X o ooo O
kprOJectlle (Z,, M) target PKA Oo
\ \_ (ZZ’ MZ) \ o) A . A /
— ./

no treatment of nuclear reaction in high-energy region
no production of PKAs created by the secondary particles

‘ extend to high-energy region

Radiation damage model in advanced Monte Carlo particle
transport codes. e.g. PHITS, FLUKA, MARS, MCNP
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Overview of PHITS

Particle and Heavy lon Transport code System

Development
JAEA (Japan), RIST (Japan), KEK (Japan), Technische Universitat Wien(Austria)

RIKEN (Japan), CEA (France), Kyushu Univ. (Japan)

Capability

Transport and collision of various particles over wide energy range

neutron, proton, meson, baryon

in 3D phase space :
P P electron, photon, heavy ions

up to 100 GeV/u

Accelerator Design Radiation Therapy Space Application

T. Sato et al., J. Nucl. Sci. Technol., 61, (2023) 127-135. 6



DPA calculation method in PHITS

(1) Transport with
nuclear interaction
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Y. lwamoto, et al., Journal of Nuclear Materials 538 (2020) 152261.
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Differential Coulomb scattering cross section

_j. (Z,, My)

E,, :kinetic energy of proton or nuclear products
s ,(Zz, M,) T:transferred energy to target atom

Classical scattering theory
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Number of displaced atoms

Number of displaced atoms is calculated using phenomenological approach.

. 0.8T4
NRT — 2E,
» E, :threshold energy of displaced

atom several eV to 100 eV
1

= T
1+ kg

Tq

» T, :damage energy is the energy
available to generate atomic
displacements by elastic collisions

» The energy lost in the cascade by
electron excitation is subtracted.

» Damage energies are saturated
with PKA energy over 1 MeV.
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Relationship between PKA energy
and damage energy

J. Lindhard et al., Dan Vidnsk Selsk Mat Fyf Medd 33:1 (1963).

Next: Defect production efficiency



Athermal recombination correction
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NRT damage model Actual damage production
Schematic illustration of the damage for the case of ~1 keV damage energy in a metal
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N Al (b=-10, c=0.44)
Actual damage production is addressed by new ( c=0.44).
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Displacement cross sections for Al, Cu, and W
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0.1 GeV or more: Contribution of nuclear reaction

| products. Nuclear damage energy is constant

NRT(standard) is larger than arc-dpa

“ by roughly a factor of 3.

IRed points: 120 GeV proton irradiation

ion metals at cryogenic temperature

Y. lwamoto et al., Nucl. Instrum. Meth. B,
557 (2024) 165543.
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120 GeV proton expt. at FNAL
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Ep 440 GeV at HiRadMat CERN (plan)

Borrowing vac. chamber
and cryocooler from MPE-

Irradiation Area  >gour winex
iRadMat

TT61
HiRadMat has dedicated feed-
throughs into an adjacent tunnel
(T'T61) where additional electronic
and measurement systems can be
added. Progress has been made to SERGRES
shield this area from radiation
effects.

3D model of feed-through
between HiRadMat
Experimental Area and
Electronics Area.
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Experiment planned in May 2025 13
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Intercomparison of DPA calculations in target materials

Benchmarking against dpa value in the target is not the case
for not directly observable value.

et

Intercomparison of radiation damage calculations in target
materials at proton accelerator facilities using various Monte

Carlo particle transport codes

Proceedings of 15th Workshop on Shielding aspects of Accelerators,
Targets, and Irradiation Facilities (SATIF-15) (Internet), p.25 - 34, 2022/09

PHITS: Yosuke Iwamoto, Lan Yao (JAEA)

ELUKA: Francesco Cerutti, Robert Froeschl, Tommaso Lorenzon,
" Francesc Salvat Pujol, and Vasilis Vlachoudis (CERN)

MCNP: Celik Yurdunaz (SCK/CEN)

15



Calculation condition

Output: depth distribution of DPA In the target.

1) Neutron source with the °Be(p,n) reaction

Beam: 30 MeV proton with a radius of 6 cm.
Target: °Be with a thickness of 5.5 mm, a radius of 6 cm, and 1.85 g/cm?

2) Spallation neutron source in WNR, LANCE

Beam: 800 MeV proton with a radius of 1 cm.
Target: Tungsten with a thickness of 20 cm, a radius of 1 cm, and 19.3 g/cm?3

3) Neutrino source target in J-PARC

Beam: 30 GeV proton with 1 cm radius
Target: Carbon with a 90 cm thickness, 1 cm radius, and 2.2 g/cm3

16



NRT-DPA (x10%* dpa/source)

Results: case 1) and case 2)
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Results: Case 3)
3) 30 GeV proton on a 90 cm thick C target
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With increasing the energy of the incident protons, the contribution of
secondary particles becomes larger at a deeper position.

FLUKA is larger than PHITS by a factor of around 1.5 and MCNP by a factor of around 2.
The possible reasons for this are as follows
> Differences in the gy, of protons, neutrons, and pions
> Lack of gy, for electrons and photons
due to electromagnetic showers (MCNP, PHITS)

18
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Summary

® DPA modeling has been developed in the PHITS code.

® In the high energy region (> ~100 MeV) for proton beams,
DPA created by secondaries increase due to nuclear reactions.

® In comparing the calculated and experimental results for o, ,

-NRT-dpa (standard) is approximately three times greater than arc dpa.

- Arc dpa reproduces the experimental data well.

® For the comparison of the depth distribution of DPA in thick targets
between codes,

- The difference in the results becomes larger
at proton energies of 30 GeV or higher.
- The displacement cross section of all particles
In the high-energy region needs to be confirmed in the future.

20



Backup



Energy in MeV (not to the scale)

Red: Nuclear reaction model or library

Blue: Atomic interaction model or library
Models and libraries highlighted in gray are not used in the default setting

Neutron Proton I Nucleus l Muon e /et Photon
106 1|TeV 1 TeV/n 1 TeV 1 TeV
JAM + GEM JAI\é(éI\“/IAD JAM/
3.0 GeV 0 JOMD JAM/
103- i i JQMD
JQMD EGSS |EPDL97 I
INCL4.6 + GEM t . GEM oF s GEM
5 200 MeV sud GEM [ 200 MeVv ETS | EGS5 =
| - JENDL
20Mev_ JENDL-5 «|10Mevin| ATIMA .\
1 MeV +
100_ e
JENDL-4.0 ATIMA or Original Model NRF
10°3- 1 keV KURBUC / ITSART 1 keV 1 keV 1 keV
*Only for negative muon capture *JOMD + ETS
101, 0:01 meV GEM 1 meV
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Displacement cross sections in this work

DPA is calculated by folding displacement cross section with particle spectrum

DPA = j Gaisp(E) O(E)dE

oqisp(E) : displacement cross section (barns)
@(E) :Fluence (1/cm?/source particle)

PHITS3.26 0aisp for neutrons, protons, pion+, and pion- up to 120 GeV
were calculated by PHITS.

FLUKA4-3.0 0qisp fOr neutrons, protons, pion+, pion-, others

were calculated by FLUKA.

MCNPG6 oa4isp for neutrons and protons up to 10 GeV were obtained
from the following the IAEA database.

https://www-nds.iaea.org/public/download-endf/DXS/ A.Yu.Konobeyev,et al.

In energies above 10 GeV, gy, 0f 10 GeV were adopted.

23



Results
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Fluence and heat: All codes agree within 35%.

|DPA: FLUKA > PHITS > MCNP.
| The possible reasons for this are as follows
1 1. Differences in the oy, of protons, neutrons, and pions

2. Lack of pion o4, (MCNP)
3. Lack of gy, for electrons and photons due to
electromaqgnetic showers (MCNP, PHITS) 24
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