

Irradiation Studies on HTS Materials in Japan: Results and Future Directions

<u>Mukesh DHAKARWAL,</u> Masami Iio, Makoto Yoshida, Toru Ogitsu, Tatsushi Nakamoto, Kento Suzuki

Japan Proton Accelerator Research Center (J-PARC), Tokai

High Energy Accelerator Research Organization (KEK), Tsukuba

Contents

1. Introduction

- J-PARC Overview
- MLF 2nd Target Station
- REBCO Coted Conductors

2. Present Status of Neutron Irradiation

3. Latest results of PIE

- Commissioning of Superconducting Evaluation System
- Superconducting Transition Temperature
- Degradation of Critical Current

4. Summary

Contents

1. Introduction

- J-PARC Overview
- MLF 2nd Target Station
- REBCO Coted Conductors

2. Present Status of Neutron Irradiation

3. Latest results of PIE

- Commissioning of Superconducting Evaluation System
- Superconducting Transition Temperature
- Degradation of Critical Current

4. Summary

J-PARC Overview

Purpose of J-PARC:

Research for the creation and structure of our universe by investigating matters at all levels, from quarks to atoms.

MW-class High Power Proton Driver

 \rightarrow Hadrons:

Neutron, Pion, Kaon

Target Nucleus

 \rightarrow Leptons:

Muon, Neutrino

Proton

(3GeV, 30GeV)

Antiproton

Neutron

MLF 2nd Target Station

Construction of MLF 2nd Target Station is proposed

TS2-Pion Capture Solenoid (10 years operation)

- Heat Deposit: ~ 450 W
- Neutron flux: 7.7 x 10²¹ n/m²
- Absorbed Dose: > 100 MGy

Conventional NbTi Magnet

- Small temperature margin
- \rightarrow T = ~ 5 K with a heat load of 1 kW
- Organic Material for Insulation
- → Degradation of the machine strength (Design limit: ~10 MGy)

Requirement of High Radiation Resistant SC Magnet

Rare-Earth Barium Copper Oxide (Re: Y, Gd, Eu, Sm)

High temperature margin (T_c=93 K)

- Conduction cooling operation in the temperature range of 20 K

High magnetic field tolerance of Ic

- Potential for 20T class high field magnet

10

Silver Overlayer

20 µm

ot to scale; SCS4/

(RE)BCO - HTS (epitaxial)

Buffer Stack

~0.2 µm

YBCO: B II Tape plane

Bi-2223: ⊥ Tape (Carr. Contr.) =Bi-2223: B ↓ Tape Surface (Prodn.)

. CSI

April 2014

Thermal Conductivity of Aluminium

Radiation Resistance of REBCO is an important issue

Contents

1. Introduction

- J-PARC Overview
- MLF 2nd Target Station
- REBCO Coted Conductors

2. Present Status of Neutron Irradiation

3. Latest results of PIE

- Commissioning of Superconducting Evaluation System
- Superconducting Transition Temperature
- Degradation of Critical Current

4. Summary

Neutron Irradiation @ BR2

- Fluence range: $0.1 \sim 10 \times 10^{22} \text{ n/m}^2$, ($E_n > 1 \text{ MeV}$, T < 100° C)
 - Target for HTS SC magnet for MLF 2nd TS: > 1 x 10²² (n/m²) w/ fast neutron
- Samples:
 - > REBCO tape (GdBCO, EuBCO)
 - \blacktriangleright MgB₂ wire
 - GFRP (BT resin w/ S-2 glass fiber)
 - Electrical insulation with ceramic coating

BR2 @Belgian nuclear research center

Neutron Irradiation @JRR-3

Irradiation at the JRR-3 (Japan Research Reactor No. 3) in FY2023

Hydraulic irradiation facility

Thermal neutron flux : 1.0 x 10¹⁸ n/m²/s
Fast neutron flux : 1.5 x 10¹⁶ n/m²/s

➢ Irradiation temperature : < 100°C</p>

≻fluence:~1.47 x 10²¹ n/m²

>Irradiation with and without shield for thermal neutron suppression

Samples for irradiation: GdBCO, YBCO, EuBCO

Post Irradiation Examination is undergoing at IMR, Oarai

DK-2	Sample Type	N	Cd	Eluence [n/m ²]	Loading for	Irradiation	Radioactivity	Dose Equivalent	DIE	Bemarks
	Sample Type		Shield		Irradiation	Period	(2021.05.12)	[mSv/h/sample]		nomarko
MC121	SCS4050-AP (GdBCO)	10	No	8.37E+22 (E>1MeV) 1.71E+23 (E>0.1MeV)	Nov. 14,	2017.03.14-	5.204E+08	1.370 (D15cm, 2021.05.12)	-	
MC122	SCS4050-AP (GdBCO)	10	No	1.80E+22 (E>1MeV) 4.11E+22 (E>0.1MeV)	2016	(28.2d)	1.119E+08	0.295 (D15cm, 2021.05.12)	Yes	Vanishment of superconductivity
MC131	SCS4050-AP (GdBCO)	5	No	7.06E+22 (E>1MeV) 1.97E+23 (E>0.1MeV)) Feb. 09, 2018	2018.04.24- 05.25 (28.2d)	5.682E+08	1.495 (D15cm, 2021.05.12)	-	
	FYSC-SCH04 (GdBCO)	5					7.525E+08	1.980 (D15cm, 2021.05.12)	-	
MC122	SCS4050-AP (GdBCO)	5	No	2.53E+22 (E>1MeV) 7.92E+22 (E>0.1MeV)			2.039E+08	0.466 (D15cm, 2021.05.12)	Yes	Vanishment of superconductivity
MC132	FYSC-SCH04 (GdBCO)	5					2.699E+08	0.612 (D15cm, 2021.05.12)	Yes	Vanishment of superconductivity
MC137	SCS4050-AP (GdBCO)	5	No	1.85E+22 (E>1MeV)	V) Jan. 10, V) 2019	2019.07.03- 08.06 (34.1d)		1.3 (D50cm,	To be done	
	FYSC-SCH04 (GdBCO)	5		4.12E+22 (E>0.1MeV)				2021.01.27)		
LIBERTY 12	SCS4050-AP (GdBCO)	5	- No	3.40E+21 (E>1MeV) 8.23E+21 (E>0.1MeV)) Nov. 26, 2018	2019.11.06- 11.06 (10.83h)		0.350 (D20cm, 2021.01.12)	Done! (June. 2021)	Degraded
	FYSC-SCH04 (GdBCO)	5								
IRR-3										
	5C52030-HM	3								
-	FYSC-SCH04 (GdBCO)	3	Yes	1.47E+21 (E>0.1MeV)					Nov 2024- Jan2025	Irradiated
	FESC-SCH04 (<mark>EuBCO</mark>)	3								
	SCS4050-AP	3								
-	FYSC-SCH04 (GdBCO)	3	No	1.47E+21 (E>0.1MeV)					Nov 2024- Jan2025	Irradiated
	FESC-SCH04 (EuBCO)	3								

Contents

1. Introduction

- J-PARC Overview
- MLF 2nd Target Station
- o REBCO Coted Conductors

2. Present Status of Neutron Irradiation

3. Latest results of PIE

- Commissioning of Superconducting Evaluation System
- Superconducting Transition Temperature
- Degradation of Critical Current

4. Summary

Superconducting Properties Evaluation System

PIE at IMR Oarai Center

• 15.5T SC magnet with conduction cooling Variable Temperature Insert (VTI)

Superconducting Transition Temperature

Variable Temperature Insert (VTI)

Commissioning with Mechanically Mounted Sample Holder

Temperature control at 77.3 K 90 78.2 80 78.0 70 77.8 Temperature [K] Temperature [K] 60F 77.6 50F 77.4 77.2 40F 77.0 30 76.8 20 Sample (+) Sample (+) 76.6 Sample (-) Sample (-) 10 Sample Temp. Sample Temp. 76.4 30 60 70 80 90 60 70 80 90 100 40 50 110 Time [min] Time [min] **Confirmed Items**

- Temperature control of sample holder up to 77 K
- Critical current measurement of HTS sample up to 77 K
- We may suffer from excluding the temperature effect to determine Ic

BR-2			Cd		Looding for	Irradiation	Radioactivity	Dose Equivalent		
	Sample Type	N	Shield	Fluence [n/m ²]	Irradiation	Period	[Bq/sample] (2021.05.12)	Rate [mSv/h/sample]	PIE	Remarks
MC121	SCS4050-AP (GdBCO)	10	No	8.37E+22 (E>1MeV) 1.71E+23 (E>0.1MeV)	/) /) Nov. 14, /) 2016	2017.03.14- 04.11 (28.2d)	5.204E+08	1.370 (D15cm, 2021.05.12)	-	
MC122	SCS4050-AP (GdBCO)	10	No	1.80E+22 (E>1MeV) 4.11E+22 (E>0.1MeV)			1.119E+08	0.295 (D15cm, 2021.05.12)	Yes	Vanishment of superconductivity
MC121	SCS4050-AP (GdBCO)	5		7.06E+22 (E>1MeV) 1.97E+23 (E>0.1MeV)) Feb.09,	2018.04.24- 05.25 (28.2d)	5.682E+08	1.495 (D15cm, 2021.05.12)	-	
MC131	FYSC-SCH04 (GdBCO)	5	NO				7.525E+08	1.980 (D15cm, 2021.05.12)	-	
MC122	SCS4050-AP (GdBCO)	5	No	2.53E+22 (E>1MeV)	2018		2.039E+08	0.466 (D15cm, 2021.05.12)	Yes	Vanishment of superconductivity
MC132	FYSC-SCH04 (GdBCO)	5	NO	7.92E+22 (E>0.1MeV))		2.699E+08	0.612 (D15cm, 2021.05.12)	Yes	Vanishment of superconductivity
MC127	SCS4050-AP (GdBCO)	5	- No	1.85E+22 (E>1MeV) 4.12E+22 (E>0.1MeV)) Jan. 10,) 2019	2019.07.03- 08.06 (34.1d)		1.3 (D50cm,	To be done	
MC 137	FYSC-SCH04 (GdBCO)	5						2021.01.27)	7)	
LIBERTY 12	SCS4050-AP (GdBCO)	5	– No	3.40E+21 (E>1MeV) 8.23E+21 (E>0.1MeV)) Nov. 26,) 2018	2019.11.06- 11.06 (10.83h)		0.350 (D20cm,	, Done! (June. 2021)	Degraded
FYSC-S (GdB	FYSC-SCH04 (GdBCO)	5						2021.01.12)		
RR-	2			1						
	SCS2030-HM (YBCO+BZO)	3								
-	FYSC-SCH04 (GdBCO)	3	3 Yes 3	1.47×10 ²¹ (E>0.1MeV)	Jan. 25,	2024.01.03- 01.04			Nov 2024- Jan2025	Irradiated
	FESC-SCH04 (<mark>EuBCO</mark>)	3								
	SCS4050-HM (YBCO+BZO) 3	3			2024	(24h)				
-	FYSC-SCH04 (GdBCO)	3	No	1.47×10 ²¹ (E>0.1MeV)					Nov 2024- Jan2025	Irradiated
	FESC-SCH04 (EuBCO)	3								

PIE (Superconducting Transition Temperature)

Superconductivity vanished in GdBCO tapes even at 4.11 x 10²² n/m².

Tc reduction of 10 K at $8.32 \times 10^{21} \text{ n/m}^2$.

Our results are similar to the reference data.

PIE (I_c -B curve): I_c criteria: 10 µV/cm, V-tap distance: 1.4 cm

Degradation Rate (I_c / I_{c0})

Degradation rate is not constant

Relatively small effect in the low temperature range. Ic/Ico (0.6@20K \logo 0.02@77K)

Our results are similar to the reference data.

D		\mathbf{n}
D	К-	

BR-2	Sampla Tupa	N	Cd	Eluonoo [n/m ²]	Loading for	Irradiation	Radioactivity	Dose Equivalent	DIE	Pomorko
	Sample Type	IN	Shield		Irradiation	Period	(2021.05.12)	[mSv/h/sample]		Nomarks
MC121	SCS4050-AP (GdBCO)	10	No	8.37E+22 (E>1MeV) 1.71E+23 (E>0.1MeV)	Nov. 14,	2017.03.14-	5.204E+08	1.370 (D15cm, 2021.05.12)	-	
MC122	SCS4050-AP (GdBCO)	10	No	1.80E+22 (E>1MeV) 4.11E+22 (E>0.1MeV)	2016	(28.2d)	1.119E+08	0.295 (D15cm, 2021.05.12)	Yes	Vanishment of superconductivity
MC131	SCS4050-AP (GdBCO)	5	No	7.06E+22 (E>1MeV)) Feb. 09, 2018	2018.04.24- 05.25 (28.2d)	5.682E+08	1.495 (D15cm, 2021.05.12)	-	
	FYSC-SCH04 (GdBCO)	5		1.97E+23 (E>0.1MeV)			7.525E+08	1.980 (D15cm, 2021.05.12)	-	
MC132	SCS4050-AP (GdBCO)	5		2.53E+22 (E>1MeV 7.92E+22 (E>0.1MeV			2.039E+08	0.466 (D15cm, 2021.05.12)	Yes	Vanishment of superconductivity
110102	FYSC-SCH04 (GdBCO)	5					2.699E+08	0.612 (D15cm, 2021.05.12)	Yes	Vanishment of superconductivity
MC137	SCS4050-AP (GdBCO)	5	- No	1.85E+22 (E>1MeV 4.12E+22 (E>0.1MeV) Jan. 10,) 2019	2019.07.03- 08.06 (34.1d)		1.3 (D50cm,	To be done	
110137	FYSC-SCH04 (GdBCO)	5						2021.01.27)		
LIBERTY 12	SCS4050-AP (GdBCO)	5	– No	3.40E+21 (E>1MeV) 8.23E+21 (E>0.1MeV)) Nov. 26, 2018	2019.11.06- 11.06 (10.83h)		0.350 (D20cm, 2021.01.12)	Done! (June. 2021)	Degraded
	FYSC-SCH04 (GdBCO)	5								
JRR-3	SCS2030-HM (YBCO+BZO)	3								
-	FYSC-SCH04 (GdBCO)	3	Yes	1.47×10 ²¹ (E>0.1MeV)					Nov 2024- Jan2025	Irradiated
	FESC-SCH04 (<mark>EuBCO</mark>)	3			Jan. 25,	2024.01.03- 01.04 (24h)				
	SCS4050-AP (YBCO+BZO)	3			2024				Nov 2024- Jan2025	Irradiated
-	FYSC-SCH04 (GdBCO)	(SC-SCH04 (GdBCO) 3 No	No	1.47×10 ²¹ (E>0.1MeV)						
	FESC-SCH04 (EuBCO)	3								

PIE (Superconducting Transition Temperature)

No reduction in T_c in YBCO at 1.47 x 10²¹ n/m². (No Cd Shield)

Reduction in T_c by <u>5K</u> in EuBCO at 1.47 x 10²¹ n/m². (No Cd Shield)

Reduction in T_c by <u>60K</u> in GdBCO tapes even at 1.47 x 10²¹ n/m². (No Cd Shield) No Reduction in T_c in GdBCO tapes even at 1.47 x 10²¹ n/m². (With Cd Shield)

PIE (I_c-B curve): I_c criteria: 10 µV/cm, V-tap distance: 1.4 cm

PIE (I_c-B curve): I_c criteria: 10 µV/cm, V-tap distance: 1.4 cm

PIE (I_c-B curve): I_c criteria: 10 µV/cm, V-tap distance: 1.4 cm

Summary

- R&D of radiation-resistant REBCO magnet is underway.
- Neutron irradiation effects on REBCO tapes have been investigated at IMR-Oarai center, Tohoku Univ.
- Superconductivity of GdBCO tape irradiated at BR-2 disappeared even at 4.11 x 10²² n/m². (No Shield)
- > T_c decrease and Ic degradation are confirmed at 8.32 x 10²¹ n/m².
- \succ The degradation rate of I_c seems to change depending on the measurement temperature.
- The irradiation with and without Cd shield is completed at the JRR-3 hydraulic irradiation facility with a target fluence of ~1.47 x 10²¹ n/m².
- No degradation in superconductivity and T_c of without shield YBCO tape and Cd Shielded GdBCO samples irradiated at JRR-3.
- > T_c decrease and Ic degradation are confirmed at 1.47 x 10²¹ n/m² in GdBCO and EuBCO
- Investigation is undergoing for Cd Shield EuBCO.
- > The next target is to increase the fluence in the next fiscal year

Thank you